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Abstract

We introduce the notions of strong and weak, local and global Lyapunov functions for fixed points of
real-time dynamical systems. LaSalle’s Invariance Principle is proven and Lyapunov functions are presented
for various special system classes. Finally, quadratic Lyapunov functions are presented as solutions to the
continuous Lyapunov equation.
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1 Preliminaries
We give here some basic definitions for dynamical systems, used in the rest of the article.

1.1 Definition: Dynamical system and fixed points
An abelian semi-group (G,+) acting on a non-empty set X 6= ∅ is called a semi-flow on X. We call (X,G) a
dynamical system. If X is a topological space, G a topological group and both the mapping induced by each
g ∈ G on X as well as the mapping G → X, g 7→ g(x) induced by each start-point x ∈ X, are continuous, we
call G a continuous semi-flow on X and (X,G) a continuous dynamical system. For any x ∈ X we call
the set Gx := (g(x))g∈G the orbit of x under the semi-flow G. A point x0 ∈ X is called a fixed point of the
system if g(x0) = x0 for all g ∈ G. If
We call the system a real-time system if G = [0,∞) or G = R. In that case we write Gt : X → X for the
mapping induced on X by t ∈ R. We call a set A ⊆ X positively invariant to the semi-flow if Gt(A) ⊆ A for
all t ≥ 0. For any point x ∈ X, we call (Gt(x))t≥0 the future orbit of x under the semi-flow.

1.2 Definition: Fixed points
Let (X,G) be a real-time dynamical system. A point x0 ∈ X is called a positively fixed point if Gt(x) = x
for all t ≥ 0. A positively fixed point x0 is called Lyapunov stable if for any neighborhood U of x0 there exists
a neighborhood V of x0, such that x ∈ V implies Gt(x) ∈ U ∀t ≥ 0. It is called locally attracting if there
exists a neighborhood U of x0 such that for all x ∈ U one has Gt(x)

t→∞−→ x0. It is called globally attracting
if for all x ∈ X one has Gt(x)

t→∞−→ x0.
It is called asymptotically stable if it is both Lyapunov stable and locally attracting, otherwise it is called
unstable. It is called globally asymptotically stable if it is Lyapunov stable and globally attracting.
If (X, d) is a metric space, then x0 is called globally exponentially stable if there exists a constant λ > 0
and a continuous function h : X → [0,∞) such that d(Gt(x), x0) ≤ h(x) · e−λt for all x ∈ X and t ≥ 0.

Remarks:

(i) Each globally attracting, positively fixed point is also locally attracting.

(ii) Each globally asymptotically stable, positively fixed point is also asymptotically stable.

(iii) Every globally exponentially stable, positively fixed point x0 of the system is also globally asymptotically
stable. Note that the continuity of h is generally needed to secure the Lyapunov stability of x0.

1.3 Definition: Limit points
Let (X,G) be a real-time dynamical system and x0 ∈ X. We say x ∈ X is a future limit point of x0 if
there exists a sequence 0 ≤ t1 < t2 < .. → ∞ such that Gtn(x0)

n→∞−→ x. We call the set G∞(x0) of all future
limit-points of x the future limit set of x0.

1.4 Lemma: Positive invariance of future limit sets
Let (X,G) be a real-time, continuous dynamical system and x0 ∈ X. Then the future limit set G∞(x0) is a
positively invariant set.

Proof: If Gtn(x0)
n→∞−→ x for some x ∈ X and 0 ≤ t1 < t2 < ..→∞, then for every t ≥ 0 one has

Gt(x) = Gt( lim
n→∞

Gtn(x0)) = lim
n→∞

Gt(Gtn(x0)) = lim
n→∞

Gtn+t(x0), (1.1)

implying that Gt(x) is a limit point of x0 as well.

2 Lyapunov functions
We present Lyapunov functions for general real-time dynamical systems. Lyapunov functions are a special kind
of auxiliary functions, that can be used to determine the stability behavior of positively fixed points of a system.
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They generalize the notion of potential energy, which is minimized by the trajectory of a classical mechanical
particle moving along its gradient. Once obtained, Lyapunov functions lead to a wealth of new insight into the
local or even global behavior of a fixed point. Unfortunately, they are typically hard to find and often demand
a great deal of good luck. See [2], [4] and [5] for more on Lyapunov functions.

2.1 Definition: Lyapunov Function
Let (X,G) be a real-time, continuous dynamical system and x0 ∈ X a positively fixed point. Let K be a
sequentially compact neighborhood of x0 and H : K → R a continuous function. Then H is called a weak,
local Lyapunov-function for x0 if it satisfies:

WL.1 Positive definiteness: H(x0) < H(x) for all x ∈ K \ {x0}.
WL.2 Decreasing on orbits: H(Gt(x)) ≤ H(x) for all x ∈ X and t ≥ 0 for which x,Gt(x) ∈ K.

It is called a strong, local Lyapunov function if it satisfies:

SL.1 Positive definiteness: H(x0) < H(x) for all x ∈ K \ {x0}.
SL.2 Strongly decreasing on orbits: H(Gt(x)) < H(x) for all x 6= x0 and t > 0 for which

x,Gt(x) ∈ K.

A continuous function H : X → R is called a weak, global Lyapunov function if it satisfies:

WG.1 Positive definiteness: H(x0) < H(x) for all x ∈ X \ {x0}.
WG.2 Decreasing on orbits: H(Gt(x)) ≤ H(x) for all x ∈ X and t ≥ 0.
WG.3 Radial non-boundedness: For all non-relatively sequentially compact A ⊆ X one has

supa∈A |H(a)| =∞.

It is called a strong, global Lyapunov function if it is defined on X and satisfies:

SG.1 Positive definiteness: H(x0) < H(x) for all x ∈ X \ {x0}.
SG.2 Strongly decreasing on orbits: H(Gt(x)) < H(x) for all x 6= x0 and t > 0.
SG.3 Radial non-boundedness: For all non-relatively sequentially compact A ⊆ X one has

supa∈A |H(a)| =∞.

Remarks:

1. Every strong, local (global) Lyapunov function is also a weak, local (global) Lyapunov function.

2. Axiom (SG.3) is always satisfied if X is a sequentially compact space, since all of its subspaces are relatively
sequentially compact.

3. If X = Rn, then axiom (SG.3) is equivalent to lim
‖x‖→∞

|H(x)| =∞.

2.2 Proposition: Lyapunov functions and positively invariant sets
Let (X,G) be a real-time, continuous dynamical system, x0 ∈ X a positively fixed point and H a Lyapunov
function for x0. Then:

1. If H : X → R is weak, global Lyapunov, then for each ε > 0 the sets

Xε := {x ∈ X : H(x) ≤ H(x0) + ε} , Xo
ε := {x ∈ X : H(x) < H(x0) + ε} (2.1)

are neighborhoods of x0, positively invariant to the semi-flow G.

2. If H : K → R is weak, local Lyapunov defined on the sequentially compact neighborhood K of x0 and

µ := inf
x∈∂K

[H(x)−H(x0)] , (2.2)

then µ > 0 and for each 0 < ε < µ the sets

Kε := {x ∈ K : H(x) ≤ H(x0) + ε} , Ko
ε := {x ∈ K : H(x) < H(x0) + ε} (2.3)

are neighborhoods of x0, positively invariant to the semi-flow G.

3



Proof:

1. Since Xo
ε is by continuity of H open, it is a neighborhood of x0. Since it is contained in Xε, the latter is one

as well. Their positive invariance follows from axiom (WG.2).

2. By definition, the domainK is sequentially compact and the infimum µ is by continuity ofH actually attained
on ∂K. As x0 /∈ ∂K, by axiom (WL.1) µ > 0. Now let 0 < ε < µ and suppose that Gt0(x) /∈ Kε for some
x ∈ Kε and t0 > 0. By axiom (WL.2),H is decreasing on orbits so that this impliesGt0(x) /∈ K. As t 7→ Gt(x)
is continuous, there exists a 0 < t ≤ t0 such that Gt(x) ∈ ∂K. This means that H(Gt(x))−H(x0) ≥ µ > ε
and thus Gt(x) /∈ Kε, a contradiction to axiom (WL.2) and the fact that Gt(x) ∈ K.

In the same manner one shows the positive invariance of Ko
ε .

Since H is continuous, Ko
ε is open in K. As K is a neighborhood of x0, Ko

ε is one as well. Since Ko
ε ⊆ Kε,

the set Kε is also a neighborhood of x0.

2.3 Lemma: Lyapunov functions and convergence of sequences
Let (X,G) be a real-time, continuous dynamical system. Let x0 ∈ X be a positively fixed point and H a weak
or strong, local or global Lyapunov function for x0. Then:

1. Every sequence (xn)n ⊆ X within the domain of H, satisfying H(xn)
n→∞−→ H(x0), converges towards x0.

2. Suppose that the future orbit (Gt(y0))t≥0 of some y0 ∈ X is fully contained in the domain of H. Then H is
constant on the future limit set G∞(y0) of y0.

Proof:

1. By remark 2.1(1), it suffices to consider the case of H being weak, local or global Lyapunov. We begin
with the case of H being a weak, global Lyapunov function. Suppose that xn���n→∞−→ x0, then there exists a
neighborhood U of x0 and a subsequence (xnk)k ⊆ (xn)n such that xnk /∈ U ∀k. As H is bounded on (xnk)k,
by axiom (WG.3) the latter is relatively- sequentially compact and we can suppose it to be converging towards
some point y0 ∈ X. By continuity of H this implies H(x0) = lim

k→∞
H(xnk) = H(y0). By axiom (WG.1) thus

y0 = x0, a contradiction!

Now let H : K → R be a weak, local Lyapunov function and H(xn)
n→∞−→ H(x0). As the sequence (xn)n is

already contained in the sequentially compact K, the above reasoning can still be applied.

2. As the function [0,∞)→ R, t 7→ H(Gt(y0)) is monotonically decreasing on the orbit of y0 and bounded from
below by H(x0), the limit H∞ := lim

t→∞
H(Gt(y0)) exists in R. Thus, for any limit point y = lim

n→∞
Gtn(y0),

with 0 ≤ t1 < t2 < ..→∞, we find by continuity of H

H(y) = lim
n→∞

H(Gtn(y0)) = lim
t→∞

H(Gt(y0)) = H∞. (2.4)

2.4 Theorem: Lyapunov functions and Lyapunov stability
Let (X,G) be a continuous, real-time dynamical system. Let x0 ∈ X be a positively fixed point and H a weak
or strong, local or global Lyapunov function for x0. Then x0 is Lyapunov stable.

Proof: By remark 2.1(1), it suffices to consider the case of H being weak, local or global Lyapunov.

• We begin with the case of H being a weak, global Lyapunov function. Let U be some arbitrary neighbor-
hood of x0. By proposition 2.2(1), each set of the form Xo

ε := H−1((−∞, H(x0) + ε)) is a neighborhood
of x0, positively invariant to the semi-flow. It thus suffices to find an ε > 0 such that Xo

ε ⊆ U .

Suppose such an ε > 0 does not exist. Then we can find a sequence (xn)n ⊆ X \U such that H(xn)
n→∞−→

H(x0). By lemma 2.3(1) xn
n→∞−→ x0, a contradiction.
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• Now consider the case of H being a weak, local Lyapunov function defined on the sequentially compact
neighborhood K of x0. Define µ > 0 as in (2.2). Then by proposition 2.2(2), the set

Ko
ε :=

{
x ∈ K : H(x) ≤ H(x0) + ε

}
(2.5)

is for every 0 < ε < µ a neighborhood of x0, positively invariant to the semi-flow. It thus suffices to
find an ε > 0 such that Ko

ε ⊆ U . Suppose such an ε > 0 does not exist. Then we can find a sequence
(xn)n ⊆ K \ U such that H(xn)

n→∞−→ H(x0). By lemma 2.3(1) xn
n→∞−→ x0, a contradiction.

2.5 Theorem: Strong, local Lyapunov functions and asymptotic stability
Let (X,G) be a continuous, real-time dynamical system. Let x0 ∈ X be a positively fixed point and H : K → R
a strong, local Lyapunov function for x0. Then x0 is asymptotically stable.

Proof: By theorem 2.4 x0 is Lyapunov stable. What is left to show, its its local attractiveness.

• Let µ > 0 defined as in Eq. (2.2) and 0 < ε < µ chosen arbitrarily. Define Kε ⊆ K as in Eq. (2.3), then by
proposition 2.2(2) it is a sequentially compact neighborhood of x0, positively invariant to the semi-flow.
Now let x ∈ Kε, then by axiom (SL.2) the function [0,∞)→ R, t 7→ H(Gt(x)) is monotonically decreasing
and is by axiom (SL.1) bounded from below by H(x0). Thus H∞ := lim

t→∞
H(Gt(x)) exists in R.

• We show that Gt(x)
t→∞−→ x0. By lemma 2.3(1), it suffices to show that H∞ = H(x0).

Indeed, as the orbit (Gt(x))t≥0 is contained in the sequentially compact set Kε, there exist t1 < t2 <

.. → ∞ and some point y0 ∈ Kε such that Gtn(x)
n→∞−→ y0. By continuity of H this implies H∞ =

lim
n→∞

H(Gtn(x)) = H(y0). On the other hand one has

H(G1(y0)) = H(G1 lim
n→∞

Gtn(x))
(♣)
= lim

n→∞
H(G1(Gtn(x)))

= lim
n→∞

H(Gtn+1(x)) = lim
t→∞

H(Gt(x))

= H(y0),

(2.6)

whereas in (♣) we used the continuity of H and G1. By axiom (SG.2) this implies y0 = x0 and thus
H∞ = H(x0).

2.6 Theorem: Strong, global Lyapunov functions and global, asymptotic stability
Let (X,G) be a continuous, real-time dynamical system. Let x0 ∈ X be a positively fixed point and H : X → R
a strong, global Lyapunov function for x0. Then x0 is the unique positively fixed point of the system and
globally, asymptotically stable.

Proof: By theorem 2.4, x0 is Lyapunov stable. We thus show its uniqueness and global attractiveness.

• We begin by showing the uniqueness of x0 as a fixed point. Let x ∈ X be another fixed point of the
system, then H(Gt(x)) = H(x) for all t > 0, which by axiom (SG.2) implies x = x0.

• Now let (x(t))t≥0 be some arbitrary orbit of the system. We show that the limit H∞ := lim
t→∞

H(x(t))

exists in R.
Indeed, the function [0,∞)→ R, t 7→ H(x(t)) is by axiom (SG.2) monotonically decreasing and by axiom
(SG.1) bounded below by H(x0), so that H∞ := lim

t→∞
H(x(t)) exists with H∞ ≥ H(x0).

• We show that x(t)
t→∞−→ x0. By lemma 2.3(1), it suffices to show that H∞ = H(x0).

As H is bounded on the orbit (x(t))t≥0, by axiom (SG.3) the orbit is relatively sequentially compact,
that is, contained in a sequentially compact set. Therefore, there exist t1 < t2 < ..→∞ and some point
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y0 ∈ X such that x(tn)
n→∞−→ y0. By continuity of H this implies H∞ = lim

n→∞
H(x(tn)) = H(y0). On the

other hand one has

H(G1(y0)) = H(G1 lim
n→∞

x(tn))
(♣)
= lim

n→∞
H(G1(x(tn)))

= lim
n→∞

H(x(tn + 1)) = lim
t→∞

H(x(t))

= H(y0),

(2.7)

whereas in (♣) we used the continuity of H and G1. By axiom (SG.2) this implies y0 = x0 and thus
H∞ = H(x0).

3 Lyapunov functions for differentiable systems
3.1 Definition: Differentiable dynamical systems
We now consider a real-time dynamical system (X,G) on an n-dimensional differentiable manifold X, with G
induced by the continuous vector field f : X → TX, that is as a solution of d

dtGt(x) = f(Gt(x)) with G0(x) = x.
We call (X,G) a differentiable dynamical system if each Gt : X → X is well-defined and continuous for all
times t ≥ 0.

Remarks:

(i) Every differentiable dynamical system is also a continuous one.

3.2 Proposition: Global Lyapunov functions for differentiable systems
Let (X,G) be a differentiable dynamical system induced by the continuous vector field f on the differentiable
manifold X. Let x0 ∈ X be some point and H : X → R a differentiable function satisfying:

DWG.1 Positive definiteness: H(x0) < H(x) for all x ∈ X \ {x0}.
DWG.2 Weakly decreasing on orbits: fxH ≤ 0 for all x ∈ X.
DWG.3 Radial non-boundedness: For all non-relatively compact A ⊆ X one has supa∈A |H(a)| =

∞.

Then x0 is a fixed point of the system and H a weak, global Lyapunov function for x0. Alternatively, suppose
that H satisfies:

DSG.1 Positive definiteness: H(x0) < H(x) for all x ∈ X \ {x0}.
DSG.2 Strongly decreasing on orbits: fxH < 0 for all x ∈ X \ {x0}.
DSG.3 Radial non-boundedness: For all non-relatively compact A ⊆ X one has supa∈A |H(a)| =

∞.

Then H is a strong, global Lyapunov function for the fixed point x0.

Proof: As x0 is by axiom (DWG.1) a local extremum of the differentiable H, all of its directional derivatives
vanish at x0. Thus fx0

H = 0 and axiom (DSG.2) implies axiom (DWG.2). In any case, axiom (DWG.2) implies
that H(Gt(x)) ≤ H(x) for all x ∈ X and t ≥ 0. Therefore, x0 is by axiom (DWG.1) necessarily a fixed point
and H a weak, global Lyapunov function for x0.
In case of axiom (DSG.2), the derivative of H along the vector field f is negative everywhere but x0, so that
for each x ∈ X \ {x0} there exists an ε > 0 with H(Gε(x)) < H(x). By the above considerations this actually
implies that H(Gt(x)) < H(x) for all t > 0, so that H is a strong Lyapunov function.

Remarks:

(i) Suppose that H : K → R is a weak or strong, global Lyapunov function for the positively fixed point
x0 ∈ X. Then if H is continuously differentiable, it satisfies axioms (DWG.1), (DWG.2) and (DWG.3).
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3.3 Proposition: Local Lyapunov functions for differentiable systems
Let (X,G) be a differentiable dynamical system induced by the continuous vector field f on the differentiable
manifold X. Let x0 ∈ X be some point and K a sequentially compact neighborhood of x0. Let H : K → R be
a continuous function, differentiable on the interior Ko, satisfying:

DWL.1 Positive definiteness: H(x0) < H(x) for all x ∈ K \ {x0}.
DWL.2 Weakly decreasing on orbits: fxH ≤ 0 for all x ∈ Ko.

Then x0 is a positively fixed point of the system. Furthermore, there exists a sequentially compact neighborhood
K̃ of x0 (possibly smaller than K), such that H

∣∣
K̃

is a weak, local Lyapunov function for x0. Alternatively,
suppose that H satisfies:

DSL.1 Positive definiteness: H(x0) < H(x) for all x ∈ K \ {x0}.
DSL.2 Strongly decreasing on orbits: fxH < 0 for all x ∈ Ko \ {x0}.

Then x0 is a positively fixed point of the system. Furthermore, there exists a sequentially compact neighborhood
K̃ of x0 (possibly smaller than K), such that H

∣∣
K̃

is a strong, local Lyapunov function for x0.

Proof: As x0 ∈ Ko is by axiom (DWL.1) a local extremum of the differentiable H, all of its directional
derivatives vanish at x0. Thus fx0

H = 0 and axiom (DSL.2) implies axiom (DWL.2). In any case, axiom
(DWL.2) implies that H(Gt(x)) ≤ H(x) for all x ∈ Ko and t ≥ 0 for which G[0,t](x) ⊆ Ko.
Now if x0 is not a positively fixed point, there must by continuity of the dynamical system exist an ε > 0
such that Gε(x0) 6= x0 and G[0,ε](x0) ⊆ Ko. Thus H(Gε(x0)) ≤ H(x0). But by axiom (DWL.1) this is a
contradiction. Therefore, x0 is a positively fixed point.
As K is sequentially compact, the infimum

µ := inf
x∈∂K

[H(x)−H(x0)] (3.1)

is attained. As x0 /∈ ∂K, one has by axiom (DWL.1) µ > 0. Choose any 0 < ε < µ and consider the set

Kε := {x ∈ K : H(x) ≤ H(x0) + ε} . (3.2)

Then, since H is continuous, Kε is a sequentially compact neighborhood of x0. Note that Kε ⊆ Ko since
Kε ∩ ∂K = ∅ (by definition of µ). Furthermore, Kε is positively invariant to the semi-flow. Indeed, if Gt(x) /∈
Kε for some x ∈ Kε and t > 0, then there exists by continuity of the system and H a t0 ≥ 0 such that
Gt0(x) ∈ Kε̃ \ Kε and G[0,t0](x) ⊆ Kε̃ ⊆ Ko for some ε̃ ∈ (ε, µ). Otherwise said, H(Gt0(x)) > H(x), even
though G[0,t0](x) ⊆ Ko, a contradiction!
We consider the restriction of H to Kε. Then H

∣∣
Kε

is weak, locally Lyapunov for x0 if axiom (DWL.2) is
satisfied. Indeed, for any x ∈ Kε one has Gt(x) ∈ Kε for all t ≥ 0 and thus by the above H(Gt(x)) ≤ H(x) for
all t ≥ 0.
On the other hand, it is strong, locally Lyapunov for x0 if axiom (DSL.2) is satisfied. Indeed, for any x ∈ Kε\{x0}
one has Gt(x) ∈ Kε, so that the function [0,∞)→ R, t 7→ H(Gt(x)) is monotonically decreasing. But since at
least locally around x, H is strictly decreasing along the orbit, one has H(Gt(x)) < H(x) for all t > 0.

Remarks:

(i) Suppose that H : K → R is a weak or strong, local Lyapunov function for the positively fixed point
x0 ∈ X. Then if H is continuously differentiable, it satisfies axioms (DWL.1) and (DWL.2).

3.4 Theorem: LaSalle’s Invariance Principle
Let (X,G) be a differentiable dynamical system induced by the continuous vector field f on the differentiable
manifold X. Let x0 be a positively fixed point and H : D(H)→ R a weak or strong, local or global Lyapunov
function for x0. Let I be the union of all positively invariant sets contained in S := {x ∈ D(H) : fxH = 0} (or
equivalently, the union of all future orbits fully contained in S). Let U ⊆ D(H) be some positively invariant
set. Then the future limit set G∞(y) of every y ∈ U is contained in I.

Proof: Let y ∈ U . By lemma 1.4 G∞(y) is a positively invariant set. By lemma 2.3(2), H is constant on
G∞(y), so that fxH = 0 for every x ∈ G∞(y). This finishes the proof.
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Examples:

(i) Suppose H to be a global Lyapunov function, that is D(H) = X. Then the future limit set G∞(y) of
every y ∈ X is contained in I.

(ii) Suppose H to be a local Lyapunov function, that is with D(H) =: K sequentially compact. Let µ be
defined as in Eq. (2.2) and Kε defined as in Eq. (2.3) for some 0 < ε < µ. Then Kε ⊆ K is by proposition
2.2(2) positively invariant, so that by LaSalle’s principle each y ∈ Kε has its future limit set G∞(y)
contained in I.

3.5 Corollary of LaSalle’s Invariance Principle
Let (X,G) be a differentiable dynamical system induced by the continuous vector field f on the differentiable
manifold X. Let x0 be a positively fixed point and H : D(H) → R a weak or strong, local (global) Lyapunov
function for x0. Let I be the union of all positively invariant sets contained in S := {x ∈ D(H) : fxH = 0}. If
I only contains x0, then x0 is (globally) asymptotically stable.

Proof:

• We begin with the case of H being a global Lyapunov function. Then by LaSalle, more precisely example
3.4(i), the future limit set of each y ∈ X can only contain x0. Now as H is monotonically decreasing
on the future orbit of y and bounded below by H(ω0), it is bounded on (Gt(y))t≥0. Since it is radially
bounded, (Gt(y))y≥0 is contained in a sequentially compact set. Now suppose Gt(y)�

��t→∞−→x0, then we can
find t1 < t2 < ..→∞ such that the sequence (Gtn(y))n converges to some point other than x0. But this
is a contradiction to G∞(y) ⊆ {x0}.

• Now consider the case of H being locally Lyapunov, thus only defined on some sequentially compact
D(H) = K. By proposition 2.2(2), there exists some sequentially compact, positively invariant neighbor-
hood Kε ⊆ K of x0. By LaSalle 3.4, the future limit set of each y ∈ Kε can only contain x0. Now suppose
Gt(y)�

��t→∞−→x0, then we can find t1 < t2 < .. → ∞ such that the sequence (Gtn(y))n converges to some
point other than x0. But this is a contradiction to G∞(y) ⊆ {x0}.

3.6 Example: The damped harmonic oscillator
In the following we study the stability of the unique, positively fixed point of the harmonic and damped harmonic
oscillator. We identify the first and second variable with the position and velocity of the oscillator respectively.

1. We consider the differentiable dynamical system on X := R2 induced by the vector field fx = (x2,−ω2x1)T ,
corresponding to an undamped harmonic oscillator of frequency ω > 0. The origin x0 := 0 is the unique
positively fixed point of the dynamical system. Now consider the function H : X → R defined as H(x) :=
ω2x21 + x22. Then H is radially unbounded, that is satisfies axiom (DWG.1). Furthermore H(x) > H(x0) for
every x 6= x0, that is H satisfies axiom (DWG.2). Finally

fxH = ∇xH · fx =
(
2ω2x1, 2x2

)
·

 x2

−ω2x1

 = 0, (3.3)

for all x ∈ X, that is H satisfies axiom (DWG.3) and is thus by 3.2 a weak, global Lyapunov function for
x0. By theorem 2.4 x0 is Lyapunov stable. By proposition 2.2(1) each ellipsoid Kε :=

{
x ∈ R2 : H(x) ≤ ε

}
,

with ε > 0, is a positively invariant set. Nonetheless, x0 is not locally attracting, as for any arbitrarily small
ε > 0, the trajectory starting at (ε, 0) stays on the contour H(x) = ω2ε2, of which x0 = 0 is not a closure
point.

2. Consider the damped version fx = (x2,−αx2 − ω2x1), where α > 0 is some constant corresponding to a
velocity-proportional friction. Then the original Lyapunov function satisfies

fxH =
(
2ω2x1, 2x2

)
·

 x2

−αx2 − ω2x1

 = −2αx22 ≤ 0, (3.4)
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and is thus only a weak, global Lyapunov function for x0. Nonetheless, the only positively invariant set
completely contained in S := {x ∈ X : fxH = 0} = {(0, x2) : x2 ∈ R} is {x0} its self. By LaSalle’s Invariance
Principle 3.5, x0 is globally asymptotically stable.

3. Now consider the non-linearly damped version fx = (x2,−αx32−ω2x1), where α > 0 is some constant. Then
the original Lyapunov function satisfies

fxH =
(
2ω2x1, 2x2

)
·

 x2

−αx32 − ω2x1

 = −2αx42 ≤ 0, (3.5)

and is thus a weak, global Lyapunov function for x0. As in the linear-friction case, the only positively
invariant set completely contained in S := {x ∈ X : fxH = 0} = {(0, x2) : x2 ∈ R} is {x0} its self. By
LaSalle’s Invariance Principle 3.5, x0 is globally asymptotically stable.

Note that, in contrast to the previous case, a linear stability analysis fails at identifying the stability behavior
of the origin, as the Jacobian

A := dx0
f =

(
0 1
−ω2 0

)
, (3.6)

being identical to the non-damped case, has purely imaginary eigenvalues ±iω.

3.7 Example: Globally, exponentially stable points
Let (X,G) be a differentiable dynamical system induced by the vector field f on the differentiable manifold X.
Suppose the topology on X is induced by a metric d. Let x0 ∈ X be some point and H : X → R a differentiable
function satisfying

E.1 fxH ≤ −λ · [H(x)−H(x0)] for all x ∈ X and some constant λ > 0.

E.2 α · [d(x, x0)]
β ≤ [H(x)−H(x0)] for all x ∈ X and some constants α, β > 0.

Then x0 is a globally exponentially stable, positively fixed point of the system. More precisely, one has

d(Gt(x), x0) ≤ β

√
H(x)−H(x0)

α
· e−

λ
β t (3.7)

for all x ∈ X and t ≥ 0.

Proof: Fix x ∈ X and define V (t) := H(Gt(x)) − H(x0) for t ≥ 0. Then V : [0,∞) → R is differentiable
and by axiom (E.1) satisfies ∂tV ≤ −λV . This implies V (t) ≤ V (0) · e−λt, as can be seen by taking the
time-derivative of the quotient V (0)e−λt/V (t). By axiom (E.2) this implies

α · [d(Gt(x), x0)]
β ≤ [H(Gt(x))−H(x0)] ≤ [H(x)−H(x0)] · e−λt (3.8)

as claimed.

3.8 Example: Lyapunov functions for gradient flows
Let (X,G) be a differentiable dynamical system induced by the vector field f on the Riemannian manifold
(X, g). Suppose that f = −∇Φ for some differentiable scalar field Φ : X → R (see footnote1). Suppose that Φ
has an isolated, local minimum at x0.
Then x0 is a Lyapunov-stable, positively fixed point of the system. Moreover, if ∇xΦ 6= 0 for all x 6= x0 within
a neighborhood of x0, then x0 is asymptotically stable.

1The vector field ∇Φ is defined by dΦ = g(∇f, ·).
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Proof: LetK be a sequentially compact neighborhood of x0 such that Φ(x) > Φ(x0) for all x ∈ K\{x0}. Now,
since fxΦ = −dxΦ(∇xΦ) = −g(∇xΦ,∇xΦ) ≤ 0, the restriction Φ

∣∣
K

satisfies axioms (DWL.1) and (DWL.2) in
proposition 3.3. It is thus a weak, local Lyapunov function for the positively fixed point x0. By theorem 2.4 x0
is Lyapunov stable.
Now suppose ∇xΦ 6= 0 for all x 6= x0 in some neighborhood U of x0. Then fxΦ < 0 for all x ∈ K ∩ U \ {x0},
so that axiom (DSL.2) is satisfied and H

∣∣
K∩U is by 3.3 a strong, local Lyapunov function for x0. By theorem

2.5 x0 is asymptotically stable.

4 Quadratic Lyapunov functions
We shall in this section consider differentiable dynamical systems on X := Rn induced by a linear vector field
f(x) = Ax (x ∈ X), with A ∈ Rn×n being some constant matrix. In particular, we study the existence of
quadratic Lyapunov functions as solutions for the so called Lyapunov matrix equation. For more information
on the latter and its connection to the stability of linear systems, see [2]. Finally, we apply the theory to the
local stability of positively fixed points of non-linear systems.

4.1 Theorem: Lyapunov functions for linear systems
Consider the dynamical system on X := Rn induced by the linear vector field fx = Ax ∈ TxX (x ∈ X), with
A ∈ Rn×n being some constant matrix. Let Q ∈ Rn×n be some positive definite (non-negative definite) matrix.
If there exists a positive definite matrix M ∈ Rn×n solving the so called continuous Lyapunov equation

ATM +MA+Q = 0, (4.1)

then the function H : X → R defined by H(x) := xTMx is a strong (weak), global Lyapunov function for the
origin x0 := 0. It satisfies

fxH = ∇H
∣∣
x
·Ax = −xTQx (4.2)

for all x ∈ Rn.

Proof: Suppose M ∈ Rn×n is positive definite and a solution of Eq. (4.1). Then by symmetry of M one finds
indeed that

∇H
∣∣
x
·Ax = 2xTM ·Ax = xTMAx + xTATMTx = xT (MA+ATM)x = −xTQx. (4.3)

Axioms (DSG.1) and (DSG.3) are automatically satisfied by positive definiteness of M and remark 2.1(3).
Axiom (DSG.2) is because of Eq. (4.3) verified provided that Q is positive definite, so that H is by proposition
3.2 a strong, global Lyapunov function for x0 = 0. If Q is only non-negative definite, axiom (DWG.2) is verified
instead and H is a weak, global Lyapunov function.

4.2 Theorem about the continuous Lyapunov equation
Let Q ∈ Rn×n be a symmetric, positive-definite (non-negative definite) matrix. Let A ∈ Rn×n be some matrix
with all of it’s eigenvalues having a negative real part. Then the integral

∞∫
0

etA
T

QetA dt =: M (4.4)

converges, that is, exists in Rn×n. The so defined matrix M is symmetric and positive-definite (non-negative
definite). It is the unique solution of the continuous Lyapunov equation

ATM +MA+Q = 0. (4.5)

10



Proof: The convergence of the integral is given because of the negativity of the real part of all eigenvalues
of A. See [3] for more details. The symmetry of M follows from representation (4.4) and the symmetry
of Q. Its positive definiteness (non-negative definiteness) follows readily from the fact that xT etA

T

QetAx =
(etAx)TQ(etAx). The matrix M is indeed a solution of Eq. (4.5), since

ATM +MA+Q =

∞∫
0

[
AT etA

T

QetA + etA
T

QetAAT
]
dt+Q

=

∞∫
0

d

dt

[
etA

T

QetA
]
dt+Q = lim

t→∞
etA

T

QetA − e0A
T

Qe0A +Q
(♣)
= 0.

(4.6)

Note that in (♣) we used the negativity of the real part of all eigenvalues of A. Since all eigenvalues of A have
negative real part, the spectra of A and −AT are disjoint. By [1], lemma 1, the solution of (4.5) is unique.

4.3 Theorem: Quadratic Lyapunov functions for non-linear systems
Let (X,G) be a differentiable dynamical system induced by the differentiable vector field f on some subset
X ⊆ Rn. Let x0 ∈ Xo be a positively fixed point of the system and A := dx0

f ∈ Rn×n. Let Q ∈ Rn×n be some
positive definite matrix. If there exists a positive definite matrix M ∈ Rn×n solving the continuous Lyapunov
equation

ATM +MA+Q = 0, (4.7)

then the restriction of the function H : X → R, H(x) := (x−x0)TM(x−x0) to some adequately small compact
neighborhood K of x0 is a strong, local Lyapunov function for x0. By theorem 2.5, x0 is thus asymptotically
stable.

Proof: Suppose M ∈ Rn×n is positive definite and a solution of Eq. (4.7). Then by symmetry of M one finds
that

∇H
∣∣
x
· fx = 2(x− x0)TM · (A(x− x0) + o(x− x0))

= (x− x0)TMA(x− x0) + (x− x0)TATMT (x− x0) + o
(
‖x− x0‖2

)
= (x− x0)T (MA+ATM)(x− x0) + o

(
‖x− x0‖2

)
= −(x− x0)TQ(x− x0) + o

(
‖x− x0‖2

) (4.8)

for every x ∈ Xo. Eq. (4.8) shows that for small enough deviations (x − x0) 6= 0, the directional derivative
∇H

∣∣
x
· fx is negative. Thus, axiom (DSL.2) is verified within the interior Ko of some small enough compact

neighborhood K ⊆ of x0.
Axiom (DSL.1 ) is automatically satisfied by positive definiteness of M . By proposition 3.3, we conclude that
H
∣∣
K

is a strong, local Lyapunov function for x0.
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