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1 Preliminaries
1.0.1 Definition: Iterated dynamical system
Let X be some set and T : X → X some mapping. Then the tuple (X,T ) shall be called an iterated
dynamical system and T the generator of its dynamic. It is called continuous if X is a topological space
and T is continuous. The tuple (X,S, µ, T ) is called a measure-preserving, iterated dynamical system1,
if (X,S, µ) is a measure space and T : X → X measurable and measure preserving, that is µ ◦ T−1 = µ.

1.0.2 Definition: Orbit
Let (X,T ) be an iterated dynamical system. For some point x ∈ X, we call the set

⋃
n∈N0

{Tnx} orbit of x
under T .

1.0.3 Definition: Conjugated dynamical systems

Two iterated dynamical systems (X,T ) and (X̃, T̃ ) shall be called conjugated if there exists a bijection ϕ :

X → X̃ such that ϕ ◦ T = T̃ ◦ ϕ. If the systems are continuous, we call them continuously conjugated
if the mapping ϕ can be chosen to be continuous in both directions. If (X,S, µ, T ), (X̃, S̃, µ̃, T̃ ) are measure
preserving systems and ϕ measurable in both directions such that µ ◦ ϕ−1 = µ̃, then the systems are called
measurably conjugated.
Note that conjugacy is an equivalence relation between iterated dynamical systems. Similarly, continuous
(measurable) conjugacy is an equivalence relation between continuous (measure-preserving), iterated dynamical
systems.

2 Dynamical systems on probability spaces
2.1 Information and entropy of partitions
2.1.1 Definition: Partition and generated σ-algebras
A measurable partition A of a measurable space (X,S) is a family of measurable, disjoint subsets of X,
covering the whole space X. For measurable partitions A1, ..,An of (X,S) we call the measurable partition∨n
k=1Ak := {

⋂n
k=1Ak : Ak ∈ Ak} the refinement of all A1, ..,An. We call a measurable partition B finer

than A (A coarser than B) and write A 4 B if A ∨ B = B. Note that 4 is a partial order on the system of
measurable partitions of (X,S) and that A 4 A ∨ B for all measurable partitions A,B.
We say that an increasing sequence of σ-algebras (Bn)n∈N converges to the σ-algebra B and write Bn ↑
B if B = σ

[⋃
n∈NBn

]
. For a countable number of measurable partitions (An)n∈N we write

∨
n∈NAn :=

σ
(⋃

n∈N
∨n
k=1Ak

)
. Thus for an increasing sequence A1 4 A2 4 .. of measurable partitions σ(An) ↑

∨
k∈NAk.

We shall note Z(S) the system of all countable, measurable partitions of (X,S).

2.1.2 Definition: Information and entropy of partitions
Let (X,S, µ) be a probability space, A ∈ Z(S) a countable, measurable partition of (X,S) and B ⊆ S. Then
the function

Iµ(A|B) := −
∑
A∈A

1A · lnµ(A|σ(B)) (2.1)

is called information of A conditional upon B. Here, µ(A|σ(B)) is the probability of A conditional upon
the σ-algebra σ(B) generated by B. We call the number

Hµ(A|B) := EµIµ(A|B) (2.2)

entropy of A conditional upon B. For B = {∅, X} we call Iµ(A) := Iµ(A|B) simply information and
Hµ(A) := Hµ(A|B) entropy of A. We shall note Z1(S, µ) the system of countable, measurable partitions of
(X,S) which posses finite entropy with respect to µ.

1In literature[1] often simply called a dynamical system.
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2.1.3 Proposition: Representation of entropy of partitions
Let (X,S, µ) be a probability space, A,B ∈ Z(S) countable, measurable partitions of (X,S). Then:

1. Iµ(A) = −
∑
A∈A 1A · lnµ(A) µ-almost everywhere.

2. Hµ(A) = −
∑
A∈A µ(A) · lnµ(A).

3. For any A ∈ S and µ-almost all x ∈ X one has µ(A|σ(B))(x) = µ(A|B) with x ∈ B ∈ B.

4. Hµ(A|B) = −
∑
B∈B

µ(B)
∑
A∈A

µ(A|B) lnµ(A|B).

Proof: Follows from the definitions of information and entropy.

2.1.4 Properties of information and entropy of partitions
Let (X,S, µ) be a probability space, A,B,D ∈ Z(S) countable, measurable partitions of (X,S) and B ⊆ S.
Then:

1. Iµ(A|B) ≥ 0 µ-almost everywhere.

2. Iµ(A|B) = 0 µ-almost everywhere if and only if A ∈ σ(B) for all A ∈ S with µ(A) > 0.

3. If A 4 B then Iµ(A|B) ≤ Iµ(B|B) µ-almost everywhere.

4. If B 4 D then Hµ(A|D) ≤ Hµ(A|B). In particular Hµ(A|D) ≤ Hµ(A).

5. Hµ(A) ≤ ln |A|.

6. (Triangle inequality) Hµ(A|D) ≤ Hµ(A|B) +Hµ(B|D).

7. Iµ(A ∨ B|D) = Iµ(A|D) + Iµ(B|A ∨ D) µ-almost everywhere.

8. Hµ(A ∨ B|D) = Hµ(A|D) +Hµ(B|A ∨ D) ≤ Hµ(A|D) +Hµ(B|D).

9. Consequently, Hµ(A)−Hµ(B) = Hµ(A|B)−Hµ(B|A) if both sides are well-defined.

10. If σ(A) and σ(B) are independent, then Iµ(A|B) = Iµ(A) µ-almost everywhere and Hµ(A|B) = Hµ(A).

11. If σ(A) and σ(B) are independent, then Iµ(A ∨ B) = Iµ(A) + Iµ(B) µ-almost everywhere.

Proof: For (5) use the concavity of ln(·) and Jensen’s inequality A.2.7. For the rest, see [1], Proposition 20 &
Korollar 15 and [2], Theorem 1.3.1.

2.1.5 Lemma: Continuity of information and entropy
Let (X,S, µ) be a probability space, A,An ∈ Z1(S, µ) be countable, measurable partitions with finite entropy
and B,Bn ⊆ S be σ-algebras. Suppose that Bn ↑ B (that is, σ(

⋃
nBn) = B) and σ(An) ↑ σ(A). Then:

1. Iµ(An|B) ↑ Iµ(A|B) µ-almost everywhere.

2. Hµ(An|B) ↑ Hµ(A|B).

3. Iµ(A|Bn)
n→∞−→ Iµ(A|B) µ-almost everywhere.

4. Hµ(A|Bn) ↓ Hµ(A|B).

Proof: See [1], Satz 103.

2.2 Kolmogorov-Sinai entropy of dynamical systems
We have up to now developed the notions of entropy for mere partitions of probability spaces without reference
to any underlying dynamic. We shall now use these preconsiderations to introduce the Kolmogorov-Sinai entropy
for measure-preserving, iterated dynamical systems (X,S, µ, T ) on probability spaces (X,S, µ).
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2.2.1 Definition: Entropy of a dynamical system
Let (X,S, µ) be a probability space, (X,S, µ, T ) a measure-preserving, iterated dynamical system andA ∈ Z(S)
a countable, measurable partition of (X,S). Then

hµ(T,A) := Hµ

[
A
∣∣ ∨
k∈N

T−k(A)

]
(2.3)

is called mean entropy of A within the dynamical system. It corresponds in a sense to the entropy of the
partition conditional upon all its pre-images. The supremum

hµ(T ) := sup {hµ(T,A) : A ∈ Z1(S, µ)} (2.4)

is called the (measure-theoretic or Kolmogorov-Sinai) entropy of the dynamical system.

2.2.2 Proposition: Invariance of the Kolmorov-Sinai entropy
Two measurably conjugated, measure-preserving, iterated dynamical systems have same Kolmogorov-Sinai en-
tropy.

Proof: See [1], Satz 109.

2.2.3 Theorem: Representation of mean entropies [Shannon-McMillan-Breiman]
Let (X,S, µ) be a probability space, (X,S, µ, T ) a measure-preserving, iterated dynamical system and A ∈
Z1(S, µ) a countable, measurable partition of (X,S) with finite entropy. Then

hµ(T,A) = lim
n→∞

1

n
Hµ

[
n−1∨
k=0

T−kA

]
, (2.5)

with the sequence on the right hand side monotonically decreasing.

Proof: See [1], Satz 104.

2.2.4 Lemma: Properties of the mean entropy
Let (X,S, µ) be a probability space, (X,S, µ, T ) a measure-preserving, iterated dynamical system and A,B ∈
Z1(S, µ) countable, measurable partitions of (X,S) with finite entropy. Then:

1. hµ(T,A) ≤ Hµ(A).

2. hµ(T,A ∨ B) ≤ hµ(T,A) + hµ(T,B).

3. If A 4 B then hµ(T,A) ≤ hµ(T,B).

4. hµ(T,A) ≤ hµ(T,B) +Hµ(A|B).

Proof: See [2], theorem 1.4.4 and [4].

2.2.5 Lemma: Persistency of entropy approximation
Let (X,S, µ) be a probability space and (X,S, µ, T ) a measure-preserving, iterated dynamical system. Let
A,B ∈ Z1(S, µ) be countable, measurable partitions of the space such that Hµ(A|B) ≤ ε. Then

Hµ

[
n−1∨
k=0

T−kA

]
≤ Hµ

[
n−1∨
k=0

T−kB

]
+ nε (2.6)

for any n ∈ N.
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Proof: The following proof was taken from [2]. Note A(n) :=
∨n−1
k=0 T

−kA and B(n) :=
∨n−1
k=0 T

−kB. Then

Hµ(A(n))
2.1.4(6)

≤ Hµ(B(n)) +Hµ(A(n)|B(n))
2.1.4(8)

≤ Hµ(B(n)) +

n−1∑
k=0

Hµ(T−kA|B(n))

2.1.4(4)

≤ Hµ(B(n)) +

n−1∑
k=0

Hµ(T−kA|T−kB)︸ ︷︷ ︸
Hµ(A|B)≤ε

≤ Hµ(B(n)) + nε

(2.7)

as claimed.

2.2.6 Proposition: Characterization of entropy by finite partitions
Let (X,S, µ) be a probability space and (X,S, µ, T ) a measure-preserving, iterated dynamical system. Then
its Kolmogorov-Sinai entropy may be taken as the supremum

hµ(T ) = sup {hµ(T,A) : A ∈ Z(S), |A| <∞} (2.8)

over all finite, measurable partitions of (X,S).

Proof: Clearly, it suffices to show inequality “≤” in (2.9). For that, it suffices to show that for any ε > 0
and any countable, measurable partition A ∈ Z1(S, µ) with finite entropy, there exists a finite, measurable
partition B such that hµ(T,A) ≤ hµ(T,B) + ε. By lemma 2.2.5 and representation (2.5), it suffices to show that
Hµ(A|B) ≤ ε. Now let A = {A1, A2, ..} ∈ Z1(S, µ) be given. As A has finite entropy, we can fix an m ∈ N such
that

−
∞∑

n=m+1

µ(An) lnµ(An) ≤ ε. (2.9)

Set Bn := An for n ∈ {1, ..,m}, B0 :=
⋃∞
n=m+1An and B := {B0, .., Bm}. Then B is a finite, measurable

partition and satisfies

Hµ(A|B)
2.1.3(4)

= −
m∑
n=1

∞∑
k=1

µ(Ak ∩Bn)︸ ︷︷ ︸
0 if n 6=k

lnµ(Ak|Bn)︸ ︷︷ ︸
0 if n=k

−
∞∑
k=1

µ(Ak ∩B0)︸ ︷︷ ︸
0 if k≤m

ln(Ak|B0)

= −
∞∑

k=m+1

µ(Ak ∩B0) lnµ(Ak|B0) = −
∞∑

k=m+1

µ(Ak) ln
µ(Ak)

µ(B0)

≤ −
∞∑

k=m+1

µ(Ak) lnµ(Ak) ≤ ε

(2.10)

as intended.

2.2.7 Theorem: Representation of entropy [Kolmogorov-Sinai]
Let (X,S, µ) be a probability space and (X,S, µ, T ) a measure-preserving, iterated dynamical system. Let
(An)n∈N ⊆ Z1(S, µ) be a fining sequence of countable, measurable partitions of (X,S) with finite entropy, such
that σ

[⋃
k∈N0,n∈N T

−kAn
]

= S. Then

hµ(T ) = lim
n→∞

hµ(T,An). (2.11)

In particular, if A ∈ Z1(S, µ) is such that
∨
k∈N0

T−kA = S (we say that A is a generator for (X,S, T )), then

hµ(T ) = hµ(T,A). (2.12)

Proof: See [1], Satz 106.
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2.2.8 Lemma: Entropy of higher order dynamics
Let (X,S, µ) be a probability space and (X,S, µ, T ) a measure-preserving, iterated dynamical system. Then

hµ(Tn) = n · hµ(T ) (2.13)

for any n ∈ N0.

Proof: See [1], Satz 105.

2.2.9 Theorem: Entropy as an affine mapping
Let (X,S) be a measurable space, T : X → X measurable and M(S, T ) the convex set of all probability measures
on (X,S) preserved by T . Let A ∈ Z(S) be a countable, measurable partition of the space. Then:

1. The mapping M(S, T )→ [0,∞], µ 7→ hµ(T,A) is affine, that is

hλµ+(1−λ)ν(T,A) = λ · hµ(T,A) + (1− λ) · hν(T,A) (2.14)

for all µ, ν ∈ M(S, T ) and λ ∈ [0, 1].

2. The mapping M(S, T )→ [0,∞], µ 7→ hµ(T ) is affine.

Proof: See [5], proposition 10.13.

2.2.10 Example: Entropy of finite dynamical systems
Let (X,S, µ) be a probability space and (X,S, µ, T ) a measure-preserving, iterated dynamical system. If the
σ-algebra S is finite, the system’s Kolmogorov-Sinai entropy vanishes.

Proof: The system of atoms A of S is the finest measurable partition of (X,S). It generates already by
its self the σ-algebra S, thus by Kolmogorov-Sinai 2.2.7 hµ(T ) = hµ(T,A). Now, for any n ∈ N one has
A 4

∨n−1
k=0 T

−kA, so that actually A =
∨n−1
k=0 T

−kA. By Shannon-McMillan-Breiman this implies hµ(T,A) =
lim
n→∞

1
nHµ(A) = 0.

3 Dynamical systems on metric spaces
3.1 Topological pressure
In the following we shall restrict ourselves to iterated dynamical systems on compact metric spaces.

3.1.1 Definition: Bowen-Metric
Let (X, d) be a metric space and (X,T ) an iterated dynamical system. For n ∈ N0 we note

dn(x, y) := sup
0≤k≤n−1

d(T kx, T ky) (3.1)

for any x, y ∈ X. The so defined metric dn : X ×X → R+ is called the n-th Bowen-metric of the dynamical
system. It can be interpreted as the maximum distance between the two orbits

{
T k
}n−1

k=0
and

{
T ky

}n−1

k=0
.

Remarks:

(i) The Bowen-metrics dn are growing in n, that is dn ≤ dn+1 for any n ∈ N0.

(ii) Each Bowen-metric is equivalent to the intrinsic metric d, provided that T is continuous.
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3.1.2 Definition: (d, ε)-separated sets
Let (X, d) be a metric space and ε > 0. A subset N ⊆ X is called (d, ε)-separated if

inf {d(x, y) : x 6= y ∈ N} ≥ ε. (3.2)

It is called maximally (d, ε)-separated if it is maximal by inclusion with that property, that is, N ∪ {x} is
no longer (d, ε)-separated for any other point x ∈ X \N .

3.1.3 Proposition: Extension to maximally separated sets
Let (X, d) be a metric space, ε > 0 and N ⊆ X some (d, ε)-separated subset. Then there exists a maximally
(d, ε)-separated subset Ñ ⊆ X containing N .

Proof: Let N ⊆ 2X be the system of (d, ε)-separated subsets containing N , equipped with the partial order of
inclusion. Then every totally ordered subsetM⊆ N has an upper bound in N , namely

⋃
M∈MM . By Zorn’s

lemma, N has a maximal element Ñ ∈ N . Obviously Ñ is maximally (d, ε)-separated and includes N .

3.1.4 Definition: Topological pressure
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system with n-th Bowen metric dn. For
ε > 0, n ∈ N and any continuous function f ∈ C(f,R) we shall call

S(d, ε, f, T, n) := sup

{∑
x∈N

exp

[
n−1∑
k=0

f(T kx)

]
: N is (d, ε)-separating set

}
(3.3)

f-weighted ε-capacities of the system. The infinitesimal asymptotic growth rate

Ptop(T, f) := lim
ε→0+

lim sup
n→∞

1

n
lnS(dn, ε, f, T, n) (3.4)

is called the topological pressure of the system for the potential f . For the special case f = 0 we call
Ptop(T, 0) =: htop(T ) topological entropy[3] of the system. The induced mapping Ptop(T, ·) : C(X) → R is
called topological pressure function of the system.

Remarks:

(i) For the special case f = 0 we shall call

S(d, ε) := sup {|N | : N ⊆ X is (d, ε) -separated} (3.5)

ε-capacity of the space (X, d). Note that this definition is not linked to T or any potential.

(ii) As (X, d) is totally bounded, the ε-capacity S(d, ε) is finite and equal to the cardinality of some maximally
(d, ε)-separated set. It corresponds to the maximum number of open ε-balls one can choose in X such
that neither one includes the center of the other.

(iii) For two metrics d ≤ d̃ on X one has S(d, ε, f, T, n) ≤ S(d̃, ε, f, T, n).

(iv) For 0 < ε ≤ ε̃ one has S(d, ε̃, f, T, n) ≤ S(d, ε, f, T, n).

(v) For any f ∈ C(X) one has S(d, ε) · en inf(f) ≤ S(d, ε, f, T, n) ≤ S(d, ε) · en·sup(f).

(vi) By remark (iv), the limit (3.1.4) exists.

3.1.5 Theorem: Topological pressure as a topological invariant
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system. Then its topological pressure
function Ptop(T, ·) : C(T )→ R is independent of the metric generating the topology of the space.
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Proof: We shall provide a proof inspired by [1]. Let d̃ be a topologically equivalent metric to d. Let
Ptop(d, T, f) and Ptop(d̃, T, f) be the topological pressures of some function f ∈ C(X) defined with respect
to the metric d and d̃ respectively. It suffices to show that Ptop(d, T, f) ≤ Ptop(d̃, T, f). As the space is com-
pact, by A.2.4 the metrics d, d̃ are uniformly equivalent, which means that for any given ε > 0 there exists
an ε̃ε > 0 so that d(x, y) ≥ ε implies d̃(x, y) ≥ ε̃ε. This relation is inherited directly by the Bowen-metrics
dn and d̃n, with the same ε̃ε. Thus every (dn, ε)-separated set is also a (d̃n, ε̃ε)-separated one, meaning that
S(dn, ε, f, T, n) ≤ S(d̃n, ε̃ε, f, T, n) for every ε > 0. As this holds for all n ∈ N, one finds that

lim sup
n→∞

1

n
lnS(dn, ε, f, T, n) ≤ lim sup

n→∞

1

n
lnS(d̃n, ε̃ε, f, T, n). (3.6)

Now, since ε̃ε can be chosen so that ε̃ε
ε→0−→ 0, (3.6) implies

Ptop(d, T, f) = lim
ε→0+

lim sup
n→∞

1

n
lnS(dn, ε, f, T, n)

≤ lim
ε̃→0+

lim sup
n→∞

1

n
lnS(d̃n, ε̃, f, T, n) = Ptop(d̃, T, f),

(3.7)

as claimed.

3.1.6 Lemma: Estimation of capacities
Let (X, d) be some metric space. If 0 < 2ε ≤ ε̃ and N ⊆ X is maximally (d, ε)-separated, then S(d, ε̃) ≤ |N |.

Proof: We show that |M | ≤ |N | for every (d, ε̃)-separated M ⊆ X by defining an injection g : M → N . For
any point x ∈M there exists at least one point y ∈ N such that d(x, y) < ε, because otherwise N would not be
maximally (d, ε)-separated. We set g(x) = y. Now for different points x, x̃ ∈M one necessarily has g(x) 6= g(x̃),
because otherwise d(x, x̃) < 2ε ≤ ε̃, a contradiction to the fact that M is (d, ε̃)-separated. Thus g : M → N is
injective.

3.1.7 Lemma: Estimation of weighted capacities
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system with Bowen-metrics (dn)n. Let
f ∈ C(X) be some function with continuity module ωf (see def. A.2.5). Then for 0 < 2ε ≤ ε̃ and any maximally
(dn, ε)-separated subset Nn,ε ⊆ X the inequality

S(dn, ε̃, f, T, n) ≤ enωf (ε) ·
∑

y∈Nn,ε

exp

[
n−1∑
k=0

f(T ky)

]
(3.8)

holds. Statement 3.1.6 thus becomes a special case for f = 0.

Proof: Note ΣnT f :=
∑n−1
k=0 f ◦ T k. Let Mn,ε̃ ⊆ X be some arbitrary (dn, ε̃)-separated subset. Then just as

in 3.1.6, one finds that there exists an injection g : Mn,ε̃ → Nn,ε such that dn(x, g(x)) < ε for all x ∈ Mn,ε̃,
meaning that d(T kx, T kg(x)) < ε for all x ∈ Mn,ε̃ and k ∈ {0, .., n − 1}. Thus

∣∣f(T kx)− f(T kg(x))
∣∣ ≤ ωf (ε)
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and consequently |(ΣnT f)(x)− (ΣnT f)(g(x))| ≤ n · ωf (ε). Thus∑
x∈Mn,ε̃

eΣnT f(x) =
∑

g(x)∈g(Mn,ε̃)

e(ΣnT f)(g(x))+(ΣnT f)(x)−(ΣnT f)(g(x))

≤
∑

y∈g(Mn,ε̃)

e(ΣnT f)(y) · enωf (ε)

≤ enωf (ε) ·
∑

y∈g(Mn,ε̃)

e(ΣnT f)(y) + enωf (ε) ·
∑

y∈Nn,ε\g(Mn,ε̃)

eΣnT f(x)

= enωf (ε) ·
∑

y∈Nn,ε

eΣnT f(y),

(3.9)

as claimed.

3.1.8 Theorem: Characterization of the topological pressure
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system with n-th Bowen metric dn. For
n ∈ N and ε > 0 let Nn,ε ⊆ X be arbitrary, maximally (dn, ε)-separated sets. Then the topological pressure of
any function f ∈ C(X) takes the form

Ptop(T, f) = lim
ε→0+

lim sup
n→∞

1

n
ln

∑
x∈Nn,ε

exp

[
n−1∑
k=0

f(T kx)

]
. (3.10)

Proof: Note ΣnT f :=
∑n−1
k=0 f ◦T k. Clearly inequality “≥” holds in (3.10) as S(dn, ε, f, T, n) ≥

∑
x∈Nn,ε e

ΣnT f(x)

for all ε > 0 and n ∈ N. We shall show that for any ε > 0 the inequality

lim sup
n→∞

1

n
lnS(dn, 2ε, f, T, n) ≤ ωf (ε) + lim sup

n→∞

1

n
ln

∑
x∈Nn,ε

eΣnT f(x)
(3.11)

holds, with ωf as the continuity module of f . By taking the limit ε → 0+ this would readily imply inequality

“≤” in (3.10), as f is uniformly continuous and thus ωf (ε)
ε→0+

−→ 0. But (3.11) follows directly from lemma 3.1.7
applied to ε̃ := 2ε.

3.1.9 Lemma: Properties of the topological pressure
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system. Then the topological pressure
function P (T, ·) : C(X)→ R satisfies:

1. Positiveness, that is 0 ≤ Ptop(T, f) for any 0 ≤ f ∈ C(X).

2. Lipschitz continuity with Lipschitz constant 1.

3. Convexity.

4. Sub-additivity.

5. inf(f) + htop(T ) ≤ Ptop(T, f) ≤ sup(f) + htop(T ) for any f ∈ C(X).

6. Ptop(T, f) is either always finite or always infinite, corresponding to the cases htop(T ) <∞ and htop(T ) =∞.
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Proof:

1. As ln exp [ΣnT f(x)] ≥ 0 for any positive 0 ≤ f ∈ C(X), the topological pressure is clearly positive.

2. Choose for every n ∈ N, ε > 0 some maximally (dn, ε)-separated Nn,ε ⊆ X, then by theorem 3.1.8

|Ptop(T, f)− Ptop(T, g)| ≤ lim
ε→0+

lim sup
n→∞

1

n

∣∣∣∣∣∣ln
∑

x∈Nn,ε

eΣnT f(x) − ln
∑

y∈Nn,ε

eΣnT g(y)

∣∣∣∣∣∣ (3.12)

for any f, g ∈ C(X). Furthermore∣∣∣∣∣∣ln
∑

x∈Nn,ε

eΣnT f(x) − ln
∑

y∈Nn,ε

eΣnT g(y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ln
∑

x∈Nn,ε

eΣnT g(x)eΣnT (f−g)(x) − ln
∑

y∈Nn,ε

eΣnT g(y)

∣∣∣∣∣∣
≤ ln e‖Σ

n
T (f−g)‖∞ ≤ n · ‖f − g‖∞ ,

(3.13)

so that (3.12) implies |Ptop(T, f)− Ptop(T, g)| ≤ ‖f − g‖∞.

3. Let λ ∈ [0, 1], then by Hölder’s inequality (see A.2.6)

1

n
ln

∑
x∈Nn,ε

eΣnT (λf+(1−λ)g)(x) =
1

n
ln

∑
x∈Nn,ε

[
eΣnT f(x)

]λ
·
[
eΣnT g(x)

](1−λ)

Hölder
≤ 1

n
ln

 ∑
x∈Nn,ε

eΣnT f(x)

λ  ∑
y∈Nn,ε

eΣnT g(y)

(1−λ)

=
λ

n
· ln

∑
x∈Nn,ε

eΣnT f(x) +
(1− λ)

n
· ln

∑
y∈Nn,ε

eΣnT g(y).

(3.14)

By theorem 3.1.8 thus

Ptop(T, λf + (1− λ)g) ≤ λPtop(T, f) + (1− λ)Ptop(T, g). (3.15)

4. For f, g ∈ C(X) one has

1

n
ln

∑
x∈Nn,ε

eΣnT (f+g)(x) ≤ 1

n
ln

∑
x∈Nn,ε

eΣnT f(x)
∑

y∈Nn,ε

eΣnT g(y)

=
1

n
ln

∑
x∈Nn,ε

eΣnT f(x) +
1

n
ln

∑
y∈Nn,ε

eΣnT g(y),

(3.16)

which implies the sub-additivity of Ptop(T, ·).

5. Follows readily from remark 3.1.4(v).

6. Follows from (5).

3.1.10 Proposition: Topological pressure of higher order dynamics
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system. Then

Ptop(Tm,ΣmT f) = m · Ptop(T, f) (3.17)

for any m ∈ N0 and f ∈ C(X), with ΣmT f :=
∑m−1
k=0 f ◦ T k.
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Proof: Let dm be the m-th Bowen-metric of (X,T ) with respect to the metric d. By remark 3.1.1(ii) the
metrics d and d̃ := dm are equivalent. By theorem 3.1.5 it suffices to show the equality of Ptop(Tm,ΣmT f) and
Ptop(T, f) taken with respect to the metrics d̃ and d respectively. Let d̃n be the n-th Bowen-metric of the system
(X,Tm) with respect to the metric d̃, then d̃n = dnm. Similarly

ΣnTmΣmT f =

n−1∑
k=0

(ΣmT f) ◦ Tmk =

n−1∑
k=0

m−1∑
l=0

f ◦ T l+mk = ΣnmT f, (3.18)

so that S(d̃n, ε,Σ
m
T f, T

m, n) = S(dnm, ε, f, T, nm). Consequently

Ptop(Tm,ΣmT f) = lim
ε→0+

lim sup
n→∞

1

n
lnS(d̃n, ε,Σ

m
T f, T

m, n)

= m · lim
ε→0+

lim sup
n→∞

1

nm
lnS(dnm, ε, f, T, nm)

= m · Ptop(T, f).

(3.19)

3.2 Topological entropy
In the following we shall consider an iterated dynamical system (X,T ) on a compact metric space (X, d) with
dn as its n-th Bowen-metric, defined in 3.1.1. We have introduced in 3.1.4 the topological entropy of such a
system as topological pressure Ptop(T, 0) of the zero-potential, taking the form of the infinitesimal asymptotic
growth rate of capacities

htop(T ) := lim
ε→0+

lim sup
n→∞

1

n
lnS(dn, ε) (3.20)

of the space. As such, it is by theorem 3.1.5 a topological invariant of the system (X,T ) and equal for continu-
ously conjugated, iterated dynamical systems.
If we consider two points x, y ∈ X as distinguishable if and only if d(x, y) ≥ ε for some given ε > 0, then
dn(x, y) ≥ ε if and only if the orbits of x, y can at some point of time in {0, .., n− 1} be distinguished.

ε

X

Figure 3.1: On the interpretation of the Bowen-metric
and the capacity S(dn, ε). Initially undistinguishable points
become along their orbits distinguishable if their Bowen-
distance is big enough.

S(dn, ε) gives thus the maximum number of orbits, all pairwise distinguishable within some time between 0
and n − 1. The topological entropy can therefore be interpreted as asymptotic growth rate of the maximum
number of distinguishable orbits with time in the limit ε → 0+. It is a measure for the dispersal of nearby
orbits and thus for the complexity of the system, uniquely defined by the topological nature of the underlying
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dynamics. Theorem 3.5.5 and corollary 3.5.6 provide with some further interpretations for an important class
of iterated dynamical systems, so called expansive ones. Example 3.5.10 gives the topological entropy for affine
transformations on the torus.

3.2.1 Theorem: Topological entropy as a topological invariant
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system. Then its topological entropy is
independent of the metric generating the topology of the space. In particular, continuously conjugated, iterated
dynamical systems have equal topological entropy.

Proof: The theorem is simply a special case of the topological invariance of topological pressures, as stated
in 3.1.5. We shall nonetheless give a light version of the same proof to clarify the underlying ideas. Let d̃ be
a topologically equivalent metric to d. Let htop(d, T ) and htop(d̃, T ) be the topological entropies of the system
defined with respect to the metric d and d̃ respectively. It suffices to show that htop(d, T ) ≤ htop(d̃, T ). As the
space is compact, by A.2.4 the metrics d, d̃ are uniformly equivalent, which means that for any given ε > 0 there
exists an ε̃ε > 0 so that d(x, y) ≥ ε implies d̃(x, y) ≥ ε̃ε. This relation is inherited directly by the Bowen-metrics
dn and d̃n, with the same ε̃ε. Thus every (dn, ε)-separated set is also a (d̃n, ε̃ε)-separated one, meaning that
S(dn, ε) ≤ S(d̃n, ε̃ε). As this holds for all n ∈ N, one finds that

lim sup
n→∞

1

n
lnS(dn, ε) ≤ lim sup

n→∞

1

n
lnS(d̃n, ε̃ε). (3.21)

Now, since ε̃ε can be chosen so that ε̃ε
ε→0−→ 0, (3.21) implies

htop(d, T ) = lim
ε→0+

lim sup
n→∞

1

n
lnS(dn, ε) ≤ lim

ε̃→0+
lim sup
n→∞

1

n
lnS(d̃n, ε̃) = htop(d̃, T ), (3.22)

as claimed.

3.2.2 Theorem: Characterization of topological entropy
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system. For n ∈ N and ε > 0 let
Nn,ε ⊆ X be arbitrary, maximally (dn, ε)-separated sets. Then

htop(T ) = lim
ε→0+

lim sup
n→∞

1

n
ln |Nn,ε| . (3.23)

Proof: Clearly inequality “≥” holds in (3.23) as S(dn, ε) ≥ |Nn,ε| for every n ∈ N, ε > 0. By lemma 3.1.6, for
each ε > 0 and n ∈ N one has S(dn, ε) ≤

∣∣Nn,ε/2∣∣. Thus
htop(T ) = lim

ε→0+
lim sup
n→∞

1

n
lnS(dn, ε) ≤ lim

ε→0+
lim sup
n→∞

1

n
ln
∣∣Nn,ε/2∣∣

= lim
ε→0+

lim sup
n→∞

1

n
ln |Nn,ε|

(3.24)

which was to be shown.

3.2.3 Proposition: Topological entropy of isometries
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system, such that T : X → X is an
isometry of the space. Then its topological entropy is zero.

Proof: As T is an isometry, all Bowen-metrics equal the intrinsic space metric. Thus, the capacities S(dn, ε)
stay constant over n, so that htop(T ) = 0.

3.2.4 Proposition: Topological entropy of higher order dynamics
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system. Then htop(Tm) = m · htop(T )
for any m ∈ N0.
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Proof: The proof is merely a special case of 3.1.10. We present it nonetheless to clarify some concepts. Let
dm be the m-th Bowen-metric of (X,T ) with respect to the metric d. By remark 3.1.1(ii) the metrics d and
d̃ := dm are equivalent. By theorem 3.2.1 it suffices to show the equality of htop(Tm) and htop(T ) taken with
respect to the metrics d̃ and d respectively. Let d̃n be the n-th Bowen-metric of the system (X,Tm) with respect
to the metric d̃. Then d̃n = dnm, thus S(d̃n, ε) = S(dnm, ε). Consequently

htop(Tm) = lim
ε→0+

lim sup
n→∞

1

n
lnS(d̃n, ε) = m · lim

ε→0+
lim sup
n→∞

1

nm
lnS(dnm, ε) = m · htop(T ). (3.25)

3.2.5 Proposition: Topological entropy of periodic dynamics
Let (X, d) be a compact metric space and (X,T ) an iterated dynamical system such that T is periodic, that is,
Tm = Id for some m ∈ N. Then the topological entropy htop(T ) is zero.

Proof: Using 3.2.4 we obtain htop(T ) = htop(Tm+1) = (m+ 1) · htop(T ), implying htop(T ) = 0.

3.3 Connecting topological pressure to the Kolmogorov-Sinai entropy
In sections 2.2.1 and 3.1.4 two different kinds of entropies were introduced for iterated dynamical systems.
The Kolmogorov-Sinai entropy requires solely a probability space and a measure-preserving map on it. The
topological entropy (or pressure for that matter) only required a compact metric space with a continuous
generator of the dynamic and was defined through the infinitesimal, asymptotic growth rate with time of the
number of distinguishable orbits. In this section we shall present the so called Variational Principle, which
connects the two concepts for probability measures defined on the Borel-σ-algebra of the metric space. It was
proven for the zero-potential around 1970 by [6, 7, 8] and [9].
If B is the Borel-σ-algebra of the underlying metric space (X, d), let M(B) denote the convex set of all Borel
probability measures on (X,B). Recall that as X is compact, M(B) is weakly* sequentially compact. Let
M(B, T ) ⊆ M(B) denote the set of all T -invariant Borel probability measures on (X,B) for some T : X → X.
Then if T is continuous, M(B, T ) is sequentially closed in the weak* topology and thus its self sequentially
compact.

3.3.1 Lemma: Approximation of measure-theoretic entropies
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,B, µ) a probability space. Let A ∈
Z1(B, µ) be a countable (finite), measurable partition of the space with finite entropy. Let ε > 0 be given.
Then there exists a countable (finite), measurable partition B = {B0, B1, B2, ..} ∈ Z1(B, µ) such that:

• All B1, B2, .. are compacts.

• |Hµ(A)−Hµ(B)| ≤ ε.

• Hµ(B|A) ≤ ε and Hµ(A|B) ≤ ε.

Proof: We shall restrict our selfs to the countable case, the finite one is proven in the same way. Let A =

{A1, A2, ..}. As X is compact, the measure µ is regular. Also recall that x ln 1
x

x→0+

−→ 0. Thus for every n ∈ N
there exists some compact Bn ⊆ An such that

µ(An \Bn) · ln 1

µ(An \Bn)
≤ ε

2
· 2−n (3.26)

and

µ(An \Bn) · ln 1

µ(Bn)
≤ ε

6
· 2−n (3.27)

and

µ(An) · ln µ(An)

µ(Bn)
≤ ε

6
· 2−n. (3.28)
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Let B0 := X \
⋃
n∈NBn, then µ(B0) =

∑
n µ(An \ Bn). We can thus even assume that µ(B0) ln 1

µ(B0) ≤ ε/6.
Now

Hµ(A|B) = −µ(B0)
∑
m∈N

µ(Am|B0) lnµ(Am|B0)−
∑
n∈N

µ(Bn)
∑
m∈N

µ(Am|Bn)︸ ︷︷ ︸
δnm

lnµ(Am|Bn)

︸ ︷︷ ︸
0

= −
∑
m∈N

µ(Am ∩B0)︸ ︷︷ ︸
µ(Am\Bm)

lnµ(Am|B0)︸ ︷︷ ︸
µ(Am\Bm)
µ(B0)

=
∑
m∈N

µ(Am \Bm) ln
µ(B0)

µ(Am \Bm)

≤
∑
m∈N

µ(Am \Bm) ln
1

µ(Am \Bm)

(3.26)

≤ ε

2
·
∑
m∈N

2−n =
ε

2
.

(3.29)

On the other hand

|Hµ(A)−Hµ(B)| ≤ |µ(B0) lnµ(B0)|+
∞∑
n=1

∣∣∣µ(An) [lnµ(An)− lnµ(Bn)]
∣∣∣+

∞∑
n=1

∣∣∣ [µ(An)− µ(Bn)] · lnµ(Bn)
∣∣∣

= µ(B0) ln
1

µ(B0)︸ ︷︷ ︸
≤ ε6

+

∞∑
n=1

µ(An) ln
µ(An)

µ(Bn)︸ ︷︷ ︸
≤ ε6 by (3.28)

+

∞∑
n=1

µ(An \Bn) · ln 1

µ(Bn)︸ ︷︷ ︸
≤ ε6 by (3.27)

≤ ε

2
.

(3.30)

Finally, by 2.1.4(9) Hµ(B|A) ≤ ε.

3.3.2 Lemma: Existence of fine partitions
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,B, µ) a probability space. Then for every
ε > 0 there exists a finite, measurable partition A of (X,B) such that diam(A) ≤ ε and µ(∂A) = 0 for every
A ∈ A.

Proof: We present the proof given in [2]. Let ε > 0 be given, then by total boundedness of X there exist points
x1, ..., xn ∈ X such that X =

⋃n
i=1B(xi, ε/4). For every fixed i ∈ {1, .., n} the sets {x : d(x, xi) = r} , ε/4 <

r < ε/2 are closed and disjoint, so that only countably many of them can have positive measure. We can thus
choose an ε/4 < r0 < ε/2 such that

µ ({x ∈ X : d(x, xi) = r0}) = 0 (3.31)

for every i ∈ {1, .., n}. Set A1 := {x ∈ X : d(x, xi) ≤ r0} and inductively

Ai := {x ∈ X : d(x, xi) ≤ r0} \
i−1⋃
k=1

Ai (3.32)

for i ∈ {2, .., n}. Then A := {A1, .., An} is a partition of X satisfying diam(Ai) ≤ ε for all i ∈ {1, .., n}.
Furthermore, µ(∂Ai) = 0 for every i ∈ {1, .., n} as generally ∂(A \B) ⊆ ∂A ∪ ∂B for any subsets A,B ⊆ X.

3.3.3 Theorem: The Variational Principle
Let (X, d) be a compact metric space and (X,T ) a continuous, iterated dynamical system. Let B be the Borel-
σ-algebra on X and M(B, T ) the system of all T -invariant probability measures on (X,B). Then the pressure
of any continuous f ∈ C(X) is given by

Ptop(T, f) = sup
{
hµ(T ) + Eµf : µ ∈ M(B, T )

}
. (3.33)
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In particular, is the topological entropy given by the supremum

htop(T ) = sup
{
hµ(T ) : µ ∈ M(B, T )

}
. (3.34)

Proof: We shall combine the proofs found in [1] and [2]. We shall in the first step show that Ptop(T, f) ≥
hµ(T ) + Eµf for any µ ∈ M(B, T ). Let A ∈ Z1(B, µ) be a finite, measurable partition. Let ε > 0 be given
and choose B = {B0, .., Bs} ∈ Z1(B, µ) as described in lemma 3.3.1, that is with B1, .., Bs as compacts and
Hµ(A|B) ≤ 1. Note A(n) :=

∨n−1
k=0 T

−kA and B(n) :=
∨n−1
k=0 T

−kB for every n ∈ N. Then by lemma 2.2.5
Hµ(A(n)) ≤ Hµ(B(n)) + n. The T -invariance of µ implies

1

n
Hµ(A(n)) +

∫
f dµ ≤ 1 +

1

n
Hµ(B(n)) +

∫
f dµ

= 1− 1

n

∑
C∈B(n)

µ(C) lnµ(C) +
1

n

n−1∑
k=0

∫
f ◦ T k dµ

= 1 +
1

n

∑
C∈B(n)

∫
C

ΣnT f dµ− µ(C) lnµ(C)

= 1 +
1

n

∑
C∈B(n)

µ(C) ln

 1

µ(C)
exp

 1

µ(C)

∫
C

ΣnT f dµ

 ,

(3.35)

which by concavity of ln(·) and Jensen’s inequality A.2.7 implies

1

n
Hµ(A(n)) +

∫
f dµ

Jensen
≤ 1 +

1

n
ln

∑
C∈B(n)

exp

 1

µ(C)

∫
C

ΣnT f dµ


≤ 1 +

1

n
ln

∑
C∈B(n)

exp

[
sup
x∈C

ΣnT f(x)

]
.

(3.36)

As X is compact, the closure C of every C ∈ B(n) is compact as well. By continuity of f , we can thus choose
some xC,n ∈ C such that ΣnT f(xC,n) = supx∈C ΣnT f(x). Now choose δ > 0 such that2

δ <
1

2
inf {d(Bk, Bl) : 1 ≤ k 6= l ≤ s} (3.37)

and d(x, y) ≤ δ implies |f(x)− f(y)| ≤ 1. For each n ∈ N, let Nn,δ ⊆ X be some maximally (dn, δ)-separated
set, with dn as n-th Bowen metric of the system. Then for each n ∈ N and C ∈ B(n) there exists some
yC,n ∈ Nn,δ with dn(xC,n, yC,n) < δ and thus by (3.36)

1

n
Hµ(A(n)) +

∫
f dµ ≤ 1 +

1

n
ln

∑
C∈B(n)

exp [ΣnT f(yC,n) + n] . (3.38)

Taking the limit lim sup
n→∞

in (3.38) and applying the Shannon-McMillan-Breiman theorem 2.2.3, one obtains

hµ(T,A) +

∫
f dµ ≤ lim sup

n→∞

1

n
ln

∑
C∈B(n)

eΣnT f(yC,n) + 2. (3.39)

Now let M(n, δ,B) be an upper bound for the cardinality of pre-images of the mapping B(n) → Nn,δ, C 7→ yC,n.
Then ∑

C∈B(n)

eΣnT f(yC,n) ≤
∑

y∈Nn,δ

eΣnT f(y) ·M(n, δ,B) (3.40)

and (3.39) takes the form

hµ(T,A) +

∫
f dµ ≤ 2 + lim sup

n→∞

1

n
ln

∑
y∈Nn,δ

eΣnT f(y)

︸ ︷︷ ︸
≤S(dn,δ,f,T,n)

+lim sup
n→∞

1

n
lnM(n, δ,B)

≤ 2 + Ptop(T, f) + lim sup
n→∞

1

n
lnM(n, δ,B).

(3.41)

2Recall that all B1, B2, .. are compact and pairwise disjoint.
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Claim: M(n, δ,B) ≤ 2n.

Proof: It suffices to show that∣∣{C ∈ B(n) : C ∩Bodn(x, δ) 6= ∅
}∣∣ ≤ 2n. (3.42)

for any x ∈ X. Now by choice of δ, one has by (3.37) for each y ∈ X∣∣{C ∈ B : C ∩Bod(y, δ) 6= ∅
}∣∣ ≤ 2, (3.43)

as any ball Bod(y, δ) can intersect at most one Bk, 1 ≤ k ≤ s (and perhaps B0). Suppose that
C ∩Bodn(x, δ) 6= ∅ for some C ∈ B(n). Now C is of the form C =

⋂n−1
k=0 T

−kCk with C0, .., Cn−1 ∈ B.
Furthermore

Bodn(x, δ) =

n−1⋂
k=0

T−k(Bod(T kx, δ)) (3.44)

so that

∅ 6=
n−1⋂
k=0

T−k(Ck)
⋂ n−1⋂

k=0

T−k(Bod(T kx, δ)) ⊆
n−1⋂
k=0

T−k
[
Ck ∩Bod(T kx, δ)

]
, (3.45)

where we have used the fact that T is continuous. This implies that Ck ∩ Bod(T kx, δ) 6= ∅ for
every k ∈ {0, .., n − 1}. By (3.43) there exist for each k at most two Ck ∈ B satisfying this, so
that there exist overall at most 2n possible C ∈ B(n) whose closure intersects Bodn(x, δ). Therefore
M(n, δ,B) ≤ 2n as claimed.

Consequently, (3.41) takes the form

hµ(T,A) +

∫
f dµ ≤ 2 + Ptop(T, f) + ln 2. (3.46)

Recall that (3.46) holds for all finite, measurable partitions A, so that by 2.2.6 it follows

hµ(T ) +

∫
f dµ ≤ 2 + Ptop(T, f) + ln 2. (3.47)

Now replacing T with Tm and f with ΣmT f , (3.46) gives

hµ(Tm) +

∫
ΣmT f dµ ≤ 2 + Ptop(Tm,ΣmT f) + ln 2, (3.48)

which by T -invariance of µ, lemma 3.1.10 and lemma 2.2.8 implies

m · hµ(T ) +m ·
∫
f dµ ≤ 2 +m · Ptop(T, f) + ln 2. (3.49)

Dividing by m and taking the limit m→∞ in (3.48) yields

hµ(T ) +

∫
f dµ ≤ Ptop(T, f) (3.50)

for any µ ∈ M(B, T ). We shall now show inequality “≤” in (3.33). We shall show that for any η > 0 one can
find a ν ∈ M(B, T ) and A ∈ Z1(B, ν) such that Ptop(T, f)− η ≤ hν(T,A) + Eνf .
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Let ν be some probability measure on (X,B) (not necessarily T -invariant) and n,M ∈ N. Then the probability
measure ν(nM) := 1

nM

∑nM−1
k=0 ν ◦ T−k satisfies

Hν(nM)

(
A(M)

)
= −

∑
A∈A(M)

1

nM

nM−1∑
k=0

ν(T−k(A)) ln
1

nM

nM−1∑
k=0

ν(T−k(A))

(♣)

≥ −
∑

A∈A(M)

1

nM

nM−1∑
k=0

ν(T−k(A)) ln ν(T−k(A))

=
1

nM

nM−1∑
k=0

Hν(T−kA(M)) =
1

nM

M−1∑
j=0

n−1∑
k=0

Hν(T−j−kMA(M))

2.1.4(8)

≥ 1

nM

M−1∑
j=0

Hν

n−1∨
k=0

j+kM+M−1∨
l=j+kM

T−lA


=

1

nM

M−1∑
j=0

Hν

j+nM−1∨
l=j

T−lA

 2.1.4(3)

≥ 1

nM

M−1∑
j=0

Hν

nM−1∨
l=j

T−lA


(♠)

≥ 1

nM

M−1∑
j=0

Hν

[
nM−1∨
l=0

T−lA

]
︸ ︷︷ ︸

Hν(A(nM))

− 1

nM

M−1∑
j=0

Hν

[
j−1∨
l=0

T−lA

]
︸ ︷︷ ︸
≤Hν(A(M))
by 2.1.4(3)

≥ 1

n
Hν

(
A(nM)

)
− 1

nM

M−1∑
j=0

Hν

(
A(M)

)︸ ︷︷ ︸
≤ln|A(M)|
by 2.1.4(5)

≥ 1

n
Hν(A(nM))− 1

n
ln
∣∣∣A(M)

∣∣∣︸ ︷︷ ︸
≤|A|M

≥ 1

n
Hν(A(nM))− M

n
ln |A|

(3.51)

for any finite, measurable partition A. In step (♣) we used the concavity of x 7→ −x lnx and Jensen’s inequality
A.2.7 applied to the integral operator 1

nM

∑nM−1
k=0 (·) and integrable function h(k) := ν(T−k(A)). In step (♠)

we used the fact that Hν(B) ≥ Hν(B ∨ D)−Hν(D) for any B,D ∈ Z1(S, ν).
Let η > 0 be given. By theorem 3.1.8 we can find an ε > 0 and an infinite subset K ⊆ N together with
maximally (dk, ε)-separated subsets Nk,ε ⊆ X such that

1

k
ln

∑
x∈Nk,ε

eΣkT f(x) ≥ Ptop(T, f)− η (3.52)

for all k ∈ K. For every k ∈ K define the probability measure µk on (X,B) by

µk :=

∑
x∈Nk,ε e

ΣkT f(x) · δx∑
y∈Nk,ε e

ΣkT f(y)
, (3.53)

with δx as Dirac-measure at point x. Consider the time-average probability measures

µ̃k :=
1

k

k−1∑
j=0

µk ◦ T−j . (3.54)

As X is compact, the set of probability measures M(B) is weak* sequentially compact. We can thus suppose
the sequence (µ̃k)k∈K to have a weak* limit probability measure ν ∈ M(B). From definition (3.54) it is easily
verifiable that the sequences (µ̃k)k and (µ̃k ◦ T−1)k have same weak* limits, thus by continuity of T the limit
ν is T -invariant.
By 3.3.2 we can choose a finite partition A of (X,B) such that diam(A) < ε and ν(∂A) = 0 for all A ∈ A. Now
fix n ∈ N and let A(n) :=

∨n−1
k=0 T

−kA. For each x ∈ Nn,ε let Ax ∈ A(n) be the unique atom containing x.
Claim: Each atom A ∈ A(n) can contain at most one point of Nn,ε.
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Proof: Supposing that x 6= y ∈ A ∩ Nn,ε, then dn(x, y) ≥ ε, that is d(T kx, T ky) ≥ ε for some
k ∈ {0, .., n − 1}. By choice of A this means that T kx and T ky cannot lie in the same atom of
A. Now A is of the form A =

⋂n−1
l=0 T

−lAl with A0, .., An−1 ∈ A, so that T kx, T ky ∈ T k(A) ⊆
T kT−k(Ak) ⊆ Ak ∈ A, a contradiction!

Now fix M ∈ N. Let K = {k1, k2, ..} with k1 ≤ k2 ≤ .. and choose for each l ∈ N natural numbers nl ∈ N and
0 ≤ rl < M such that kl = nl ·M + rl. Define

µ
(nlM)
kl

:=
1

nlM

nlM−1∑
j=0

µkl ◦ T−j . (3.55)

Claim: µ(nlM)
kl

l→∞−→
weak*

ν.

Proof: Notice that µ(nlM)
kl

= kl
nlM

· µ̃kl − 1
nlM

∑kl−1
j=nlM

µkl ◦ T−j . As kl
nlM

→ 1 and µ̃kl → ν, we

need to show that 1
nlM

∑kl−1
j=nlM

µkl ◦ T−j
l→∞−→
weak*

0. Well, for any g ∈ C(X)∣∣∣∣∣∣ 1

nlM

kl−1∑
j=nlM

∫
g d(µkl ◦ T−j)

∣∣∣∣∣∣ ≤ 1

nlM

kl−1∑
j=nlM

∫ ∣∣g ◦ T j∣∣ dµkl︸ ︷︷ ︸
≤‖g‖∞

≤ ‖g‖∞ ·
rl
nlM

l→∞−→ 0 (3.56)

which was to be shown.

Since the border of every A ∈ A(M) has zero ν-measure it follows µ(nlM)
kl

(A)
l→∞−→ ν(A). Since A(M) is finite, we

conclude that H
µ
(nlM)

kl

(A(M))
l→∞−→ Hν(A(M)). Applying (3.51) to µ(nlM)

kl
we find

Hν(A(M)) +M ·
∫
f dν = lim

l→∞

[
H
µ
(nlM)

kl

(A(M)) +M ·
∫
f dµ

(nlM)
kl

]
(3.51)

≥ lim sup
l→∞

[
1

nl
Hµkl

(A(nlM))− M

nl
ln |A|+ M

nlM
·
∫

ΣnlMT f dµkl

]
(♣)

≥ lim sup
l→∞

[
1

nl
Hµkl

(A(kl))− 2M

nl
ln |A|+ 1

nl

∫
ΣnlMT f dµkl

]
(♠)
= lim sup

l→∞

[
1

nl
Hµkl

(A(kl))− 2M

nl
ln |A|+ 1

nl

∫
ΣklT f dµkl

]

=lim sup
l→∞

1

nl

∑
A∈A(kl)

µkl(A)︸ ︷︷ ︸
0 if

A∩Nkl,ε=∅

ln
1

µkl(A)
exp

 1

µkl(A)

∫
A

ΣklT f dµkl


(3.53)

= lim sup
l→∞

1

nl

∑
A∈A(kl)

A∩Nkl,ε={xA}6=∅

µkl(A) ln

∑
y∈Nkl,ε

eΣ
kl
T f(y)

exp
[
ΣklT f(xA)

] exp
[
ΣklT f(xA)

]

=lim sup
l→∞

M

kl

(
1 +

rl
nlM

)
︸ ︷︷ ︸

l→∞−→ 1

∑
A∈A(kl)

µkl(A)

︸ ︷︷ ︸
1

ln
∑

y∈Nkl,ε

eΣ
kl
T f(y)

(3.52)

≥ M · (Ptop(T, f)− η).

(3.57)

Here xA denotes the unique point in A ∩Nkl,ε, if existing. In step (♣) we used the fact that

Hµkl
(A(nlM)) ≥ Hµkl

(A(kl))−Hµkl

 kl−1∨
j=nlM

T−jA


≥ Hµkl

(A(kl))− ln

∣∣∣∣∣∣
kl−1∨
j=nlM

T−jA

∣∣∣∣∣∣︸ ︷︷ ︸
≤|A|kl−nlM≤|A|M

≥ Hµkl
(A(kl))−M ln |A| .

(3.58)

19



In step (♠) we used the fact that∣∣∣∣ 1

nl

∫
ΣnlMT f dµkl −

1

nl

∫
ΣklT f dµkl

∣∣∣∣ ≤ 1

nl

∫ kl−1∑
j=nlM

∣∣f ◦ T j∣∣ dµkl︸ ︷︷ ︸
≤rl·‖f‖∞

l→∞−→ 0.
(3.59)

Dividing (3.57) by M yields

1

M
Hν(A(M)) +

∫
f dν ≥ Ptop(T, f)− η. (3.60)

The limit M →∞ yields by the Shannon-McMillan-Breiman theorem 2.2.3 the inequality

hν(T,A) + Eνf ≥ Ptop(T, f)− η (3.61)

as needed.

3.3.4 Corollary: Variational principle for ergodic measures
Let (X, d) be a compact metric space and (X,T ) a continuous, iterated dynamical system. Let Mer(B, T ) be
the system of all T -invariant, ergodic Borel-probability measures on X. Then the pressure of any continuous
f ∈ C(X) is given by

Ptop(T, f) = sup
{
hµ(T ) + Eµf : µ ∈ Mer(B, T )

}
. (3.62)

Proof: See [2], corollary 2.4.3.

3.4 Equilibrium measures
The Variational Principle proven in 3.3.3 gives a direct connection between topological pressure and the
Kolmogorov-Sinai entropy of an iterated dynamical system on a compact metric space. Strongly related to
this principle are so called equilibrium measures, maximizing certain functionals of invariant probability mea-
sures. We shall outline here only some basic results stemming from considerations of the pressure function.

3.4.1 Definition: Equilibrium measures
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,T ) a continuous, iterated dynamical
system. A T -invariant probability measure µ ∈ M(B, T ) is called an equilibrium measure for the potential
f ∈ C(X) if it satisfies

Ptop(T, f) = hµ(T ) + Eµf. (3.63)

For the special case f = 0 it is also called maximum entropy measure. Note that such measures need not
always exist3! The study of the functional Ptop(T, ·) : C(X) → R gives insight into questions of existence and
unicity of equilibrium measures[2].

3.4.2 Proposition: The set of equilibrium measures
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,T ) a continuous, iterated dynamical
system. Let Meq(B, T, f) ⊆ M(B, T ) denote the set of all equilibrium measures for the potential f ∈ C(X).
Then:

1. Meq(B, T, f) is a convex set.

2. If Meq(B, T, f) 6= ∅ then Meq(B, T, f) contains ergodic measures.
3See [2], example 2.5.2.
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Proof:

1. Follows from the fact that µ 7→ hµ(T ) is an affine mapping on M(B, T ) (see 2.2.9).

2. See [2], proposition 2.5.1.

3.4.3 Definition: Tangent functional
Let E be a K-linear space (K ∈ {R,C}) and Φ : E → K convex. A linear functional a : E → K is called a
tangent functional to Φ at x ∈ E if

Φ(x+ y)− Φ(x) ≥ a(y) (3.64)

for all y ∈ E.

3.4.4 Proposition over tangent functionals
Let E be a K-Banach space and Φ : E → K convex, Gâteaux-derivable at x ∈ E with Gâteaux-derivative dxΦ.
Then dxΦ is linear if and only if Φ has a tangent functional at x, in which case that functional is exactly dxΦ.

Proof:

Direction “⇐”: Let a : E → K be a tangent functional to Φ at x. Then by definition 3.4.3, for arbitrary y ∈ E
one has

a(y) = lim
λ→0+

a(λy)

λ
≤ lim
λ→0+

Φ(x+ λy)− Φ(x)

λ
= dxΦy, (3.65)

showing that a ≤ dxΦ. By K-homogeneity of both sides this implies a = dxΦ.

Direction “⇒”: Let dxΦ : E → K be linear. Then for every λ ∈ [0, 1] and y ∈ E one has by convexity

Φ(λx+ (1− λ)(x+ y))︸ ︷︷ ︸
Φ(x+(1−λ)y)

≤ λΦ(x) + (1− λ)Φ(x+ y)︸ ︷︷ ︸
(1−λ)Φ(x+y)−(1−λ)Φ(x)+Φ(x)

(3.66)

and thus

Φ(x+ (1− λ)y)− Φ(x)

(1− λ)
≤ Φ(x+ y)− Φ(x). (3.67)

Taking the limit λ→ 1− in (3.67) one finds

dxΦ(y) ≤ Φ(x+ y)− Φ(x), (3.68)

that is dxΦ is indeed a tangent functional to Φ at x.

3.4.5 Proposition: Equilibrium measures as tangents
Let (X, d) be a compact metric space and (X,T ) a continuous, iterated dynamical system. If a T -invariant
Borel-probability measure µ ∈ M(B, T ) is an equilibrium measure for the potential f ∈ C(X), then the linear
functional C(X,R)→ R, g 7→ Eµg is tangent to the pressure function Ptop(T, ·) at f . Consequently, if Ptop(T, ·)
is Gâteaux derivable at f , there exists by 3.4.4 at most one equilibrium measure for f .

Proof: By definition of equilibrium measures one has hµ(T ) + Eµf = Ptop(T, f). Furthermore, for h ∈ C(X)
one has by the Variational Principle hµ(T ) + Eµ(f + h) ≤ Ptop(T, f + h). Subtracting the inequality from the
previous equality yields Eµh ≤ Ptop(T, f + h)− Ptop(T, f), which by definition 3.4.3 was to be shown.

3.4.6 Definition: Upper semicontinuity
A function f : X → R∪{±∞} on a metric space (X, d) is called upper semicontinuous if for any convergent
sequence xn

n→∞−→ x ∈ X one has lim sup
n→∞

f(xn) ≤ f(x).
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3.4.7 Proposition: Existence of equilibrium measures
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,T ) a continuous, iterated dynamical
system. If the function M(B, T ) → R, µ 7→ hµ(T ) is upper semicontinuous in the weak* topology, then each
potential f ∈ C(X) has an equilibrium measure.

Proof: By the Variational Principle 3.3.3 there exists a sequence (µn)n∈N ⊆ M(B, T ) of T -invariant Borel
probability measures such that hµn(T ) +

∫
f dµn ↑ Ptop(T, f). As M(B, T ) is weakly* sequentially compact, we

can suppose the sequence (µn) to have a weak* limit µ in M(B, T ), thus by upper semicontinuity of h(·)(T )

Ptop(T, f) = lim sup
n→∞

[
hµn(T ) +

∫
f dµn

]
≤ hµ(T ) +

∫
f dµ (3.69)

as claimed. The other inequality direction follows from the Variational Principle 3.3.3.

3.5 Expansive dynamical systems
In the following we consider so called expansive, iterated dynamical systems on compact metric spaces and
present expressions for their topological entropy.

3.5.1 Definition: Expansive dynamical system
Let (X, d) be a metric space. We call an iterated dynamical system (X,T ) expansive[1], if there exists a
constant ϑ > 0 such that d(Tnx, Tny) < ϑ ∀n ∈ N0 implies x = y for all x, y ∈ X. We call such a ϑ an
expansivity constant for (X,T ).

Remarks:

(i) If ϑ > 0 is an expansivity constant of (X,T ) and 0 < ϑ̃ < ϑ, then ϑ̃ is one as well.

(ii) If X is a compact metric space, then by lemma A.2.4 expansivity of iterated dynamical systems on X does
not depend on the metric generating the topology. As a consequence, continuously conjugated, compact,
iterated dynamical systems are either both or none of them expansive.

(iii) If ϑ is an expansivity constant of (X,T ), then each finite subset N ⊆ X becomes (dn, ϑ)-separated for n
large enough. In particular S(dn, ϑ)

n→∞−→ ∞ provided |X| = ∞. When considering any x, y ∈ X to be
distinguishable iff d(x, y) ≥ ϑ, then any finite number of orbits are distinguishable after some long enough
time.

3.5.2 Lemma: Uniform expansivity constants
Let (X, d) be a compact metric space and (X,T ) an expansive, continuous, iterated dynamical system with
expansivity constant ϑ. Then there exists an expansivity constant 0 < ϑ̃ ≤ ϑ such that

sup
x∈X

{
diamdBdn(x, ϑ̃)

}
n→∞−→ 0, (3.70)

whereas the balls Bdn(x, ϑ̃) are defined with respect to the n-th Bowen-metric dn of the system but their
diameter diamdBdn(x, ϑ̃) with respect to the intrinsic metric d. We shall call such a ϑ̃ a uniform expansivity
constant.

Proof: We present the proof given by [1]. Let Bod(zi, ϑ/4), i ∈ I be a finite open covering of X by open balls
and 0 < ϑ̃ ≤ ϑ a Lebesgue-number (see A.2.1) for that covering. Suppose (3.70) to be false, then there exists
an ε > 0, numbers (nk)k∈N ⊆ N and points (xk)k ⊆ X such that nk → ∞ and diamdBdnk (xk, ϑ̃) > 2ε for all
k ∈ N. We thus find points (yk)k ⊆ X such that dnk(xk, yk) ≤ ϑ̃ but d(xk, yk) ≥ ε. As X is compact, we can
suppose that xk

k→∞−→ x ∈ X and yk
k→∞−→ y ∈ X. Note that x 6= y.

Now dnk(xk, yk) ≤ ϑ̃ means in particular that d(T lxk, T
lyk) ≤ ϑ̃ for all l ∈ {0, .., nk}. Fix l ∈ N, then by choice

of ϑ̃ one finds that T lxk, T lyk ∈ Bod(zi, ϑ/4) for some i ∈ I and an infinite number of k ∈ N. By continuity of T
this implies that T lx ∈ Bd(zi, ϑ/4) and T ly ∈ Bd(zi, ϑ/4), thus d(T lx, T ly) ≤ ϑ/2. This holds for every l ∈ N.
But ϑ was an expansivity constant for (X,T ), which is a contradiction!
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3.5.3 Definition: Expanding dynamical system
Let (X, d) be a metric space. We call an iterated dynamical system (X,T ) expanding[1], if there exist constants
Λ > 1 and ϑ > 0 such that

d(Tx, Ty) ≥ Λ · d(x, y) (3.71)

for all x, y with d(x, y) ≤ ϑ.

Remarks:

(i) Every expanding system is expansive with the above-mentioned constant ϑ as expansivity constant.

(ii) Wether an iterated dynamical system is expanding or not depends on the actual underlying metric!

3.5.4 Lemma: Expansive dynamical systems as expanding ones
Let (X, d) be a compact metric space and (X,T ) an expansive, continuous, iterated dynamical system. Then
there exists on X a metric d̃ equivalent to d, under which the system becomes expanding.

Proof: Can be found in [10] or [1], Satz 46.

3.5.5 Theorem: Topological entropy of expansive systems
Let (X, d) be a compact metric space and (X,T ) a continuous, expansive, iterated dynamical system. Let ϑ
be a uniform expansivity constant for the system as postulated in 3.5.2. Let Nn ⊆ X be arbitrary, maximally
(dn, ϑ)-separated subsets. Then the system’s topological entropy htop(T ) is given by the asymptotic growth
rate

lim sup
n→∞

1

n
ln |Nn| (3.72)

of the cardinalities |Nn|. In particular

htop(T ) = lim sup
n→∞

1

n
lnS(dn, ϑ). (3.73)

Proof: As X is compact, by remark 3.1.4(ii) one can suppose that

htop(T ) = lim
ε→0+

lim sup
n→∞

1

n
ln |Mn,ε| (3.74)

for some maximally (dn, ε)-separated sets Mn,ε ⊆ X. Note that S(dn, ε) ≥ |Nn| for all 0 < ε < ϑ and n ∈ N, so
that htop(T ) is certainly greater or equal to (3.72). It thus suffices to show that for any 0 < ε < ϑ one has

lim sup
n→∞

1

n
ln |Mn,ε| ≤ lim sup

n→∞

1

n
ln |Nn| . (3.75)

As ϑ satisfies (3.5.2), one can find an mε ∈ N such that dm(x, y) < ϑ implies d(x, y) < ε/4 for all m ≥ mε and
x, y ∈ X. In particular

∀x, y ∈ X, n ∈ N : dn(x, y) ≥ ε/4 ⇒ dn+mε(x, y) ≥ ϑ. (3.76)

Now fix n ∈ N and 0 < ε < ϑ. For each x ∈Mn,ε there exists an y ∈ Nn+mε such that dn(x, y) < ε/4, because
otherwise dn(x, y) ≥ ε/4 ∀y ∈ Nn+mε would by (3.76) imply dn+mε(x, y) ≥ ϑ ∀y ∈ Nn+mε , a contradiction
to the maximality of Nn+mε as (dn+mε , ϑ) separating set. We pose f(x) := y. The so defined function
f : Mn,ε → Nn+mε is injective because f(x) = f(x̃) for two x 6= x̃ ∈Mn,ε would imply

dn(x, x̃) ≤ dn(x, f(x)) + dn(x̃, f(x̃)) <
ε

4
+
ε

4
=
ε

2
, (3.77)
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a contradiction as Mn,ε is (dn, ε)-separated. Thus |Mn,ε| ≤ |Nn+mε | and

lim sup
n→∞

1

n
ln |Mn,ε| ≤ lim sup

n→∞

1

n
ln |Nn+mε |

= lim sup
n→∞

1

n+mε
ln |Nn+mε |

= lim sup
n→∞

1

n
ln |Nn|

(3.78)

as claimed.

3.5.6 Corollary: Estimation of topological entropy of expansive systems
Let (X, d) be a compact metric space and (X,T ) a continuous, expansive, iterated dynamical system. For n ∈ N
let Pn ⊆ X be the set of fixed points of Tn. Then

htop(T ) ≥ lim sup
n→∞

1

n
ln |Pn| . (3.79)

Proof: Let ϑ be a uniform expansivity constant for the system. Then by 3.5.5 it suffices to show that
S(dn, ϑ) ≥ |Pn|, or that Pn is (dn, ϑ)-separated for that matter. But this is clearly the case, as any pair
x 6= y ∈ Pn with dn(x, y) < ϑ would satisfy d(T kx, T ky) < ϑ for all times k ∈ N0, a contradiction to the
expansivity of the system.

3.5.7 Lemma: Generators for expansive systems
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,T ) an expansive, iterated dynamical
system with uniform expansivity constant ϑ > 0. Then each countable, measurable partition A of (X,B) with
diam(A) ≤ ϑ for each A ∈ A is a generator for (X,B, T ), that is

∨
n∈N0

T−n(A) = B.

Proof: Noting A(n) :=
∨n−1
k=0 T

−k(A), we need to show that σ
[⋃

n∈N0
A(n)

]
= B. As each A(n) is countable,

it suffices to show that the countable system B :=
⋃
n∈N0

A(n) “generates” the topology of the space, in the sense
that each open set is union of elements in B. It suffices to show that for each x ∈ X and ε > 0 there exists an
A ∈ B such that x ∈ A ⊆ Bod(x, ε).
Now by definition of uniform expansivity constants there exists an nε ∈ N such that dnε(x, y) ≤ ϑ implies
d(x, y) < ε for any x, y ∈ X, or inversely, d(x, y) ≥ ε implies d(T kx, T ky) > ϑ for some k ∈ {0, .., nε − 1}.
Choose A ∈ A(nε) such that x ∈ A. Then A is of the form A =

⋂nε−1
k=0 T−k(Ak) with Ak ∈ A. Thus, any y ∈ A

satisfies d(x, y) < ε, since otherwise d(T kx, T ky) > ϑ for some k ∈ {0, .., nε − 1}, a contradiction to the fact
that T kx, T ky ∈ Ak and diam(Ak) ≤ ϑ. Therefore x ∈ A ⊆ Bod(x, ε) as intended.

3.5.8 Theorem: Kolmogorov-Sinai entropy of expansive systems
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,T ) an expansive, iterated dynamical
system with uniform expansivity constant ϑ > 0. Let µ ∈ M(B, T ) be a T -invariant probability measure and
A ∈ Z1(B, µ) a countable, measurable partition with finite entropy, such that diam(A) ≤ ϑ for each A ∈ A.
Then the Kolmogorov-Sinai entropy hµ(T ) of the system (X,B, µ, T ) is given by the average entropy hµ(T,A)
of the partition.

Proof: By lemma 3.5.7 the partition A is a generator for B. By the Kolmogorov-Sinai theorem 2.2.7 this
implies hµ(T ) = hµ(T,A).
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3.5.9 Theorem: Existence of equilibrium measures for expansive systems
Let (X, d) be a compact metric space with Borel-σ-algebra B and (X,T ) a continuous, expansive, iterated
dynamical system. Then Meq(B, T, f) 6= ∅ ∀f ∈ C(X), that is, each continuous potential f ∈ C(X) has an
equilibrium measure.

Proof: The following proof was taken from [2]. By proposition 3.4.7 it suffices to show that the mapping
M(B, T ) → R, µ 7→ hµ(T ) is upper semicontinuous. Let ϑ > 0 be a uniform expansivity constant for the
system and µ ∈ M(B, T ) be given. Then by 3.3.2 there exists a finite, measurable partition A of (X,B) such
that diam(A) ≤ ϑ and µ(∂A) = 0 for all A ∈ A. Note A(m) :=

∨m−1
k=0 T−k(A), then each A ∈ A(m) satisfies

µ(∂A) = 0 since ∂(B ∩ C) ⊆ ∂B ∩ ∂C and ∂T−1(B) ⊆ T−1(∂B) for any B,C ⊆ X. As A(m) is finite, this
implies that the function

Hm : M(B, T )→ R , Hm(ν) :=
1

m
Hν(T,A(m)) (3.80)

is weak* continuous at µ for each m ∈ N. Furthermore, the sequence of functions (Hm)m is by 2.2.3 pointwise
decreasing with H(ν) := infmHm(ν) = hν(T,A), which by lemma A.2.8 implies that H(ν) is upper semicon-
tinuous at µ. Finally, note that by construction of A and theorem 3.5.8 one has hν(T ) = hν(T,A) = H(ν) for
every ν ∈ M(B, T ), which concludes the proof.

3.5.10 Example: Affine flows on the torus
Let Tm be the m-dimensional torus and T : Tm → Tm an affine transformation defined by T (x) := (α +
Ax)modZm for some α ∈ Rm and A ∈ GL(Zm). Let λ1, .., λm ∈ C be the eigenvalues of A. Then the iterated
dynamical system (Tm, T ) satisfies:

1. It is expansive, provided that |λ1| , .., |λm| > 1.

2. It has topological entropy

htop(T ) =
∑
|λi|>1

ln |λi| . (3.81)

Proof:

1. By 3.5.3(i) it suffices to show that (Tm, T ) is expanding in some convenient metric. For that, it suffices to show
that for some large enough n ∈ N the matrix An is a strictly expansive map on Rm, that is ‖Anx‖ ≥ Λ·‖x‖ for
every x ∈ Rm and some convenient Λ > 1. Equivalently, it suffices to show that A−n is a strictly contractive
map on Rm, that is ‖A−n‖ < 1, for n large enough. Indeed, as all eigenvalues λ−1

1 , .., λ−1
n ∈ C of A−1 are by

absolute value strictly smaller than 1, one has A−n n→∞−→ 0 in the operator norm.

2. See [1], Satz 56.

A Appendix
A.1 Classical thermodynamics
A.1.1 The free-energy formalism
For a classical thermodynamical system modeled by a countable phase space X with probability measure µ on
(X, 2X), one defines its thermodynamical entropy as a functional4

S[µ] := −~
∑
x∈X

µ(x) lnµ(x) (A.1)

4Supposing the Boltzmann constant kB to be normalized to 1.
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solely of the underlying measure. The free energy Fµ(T ) of the system, a function of the system’s temperature
T , is defined as

Fµ(T ) = EµE − TSµ, (A.2)

with E as energy function on X. Now classical thermodynamics teaches us that Fµ(T ) is minimized in ther-
modynamic equilibrium in case of constant temperature T , fixed particle number and fixed volume. This
corresponds to a variational problem in the measure µ, which translates into minimizing

1

~T
∑
x∈X

E(x)µ(x) +
∑
x∈X

µ(x) lnµ(x) (A.3)

under the constraint
∑
x∈X µ(x) = 1. Using the method of Lagrange multipliers this leads to the equilibrium

measure

µ(x) =
e−E(x)/~T∑

y∈X
e−E(y)/~T

,
(A.4)

known as Boltzmann distribution. Note the formal similarity to the definition of equilibrium measures in it-
erated dynamical systems for a potential −E/(~T ), maximizing the expression hµ+Eµ(−E/~T ), or equivalently,
minimizing Eµ(E/~T )− hµ.

A.1.2 Maximizing entropy under energy constraints
For a given system with constant particle number and volume, its temperature corresponds to a certain expected
energy EµE. The Boltzman distribution (A.4) can also be derived as the probability measure µ on the system
(X, 2X) for which S[µ] is maximized under the condition of a given expected energy EµE

!
= E . Using the

method of Lagrange multipliers, this variational problem leads to the sole possibility

µ(x) =
e−βE(x)∑

y∈X
e−βE(y)

,
(A.5)

with the constant β such that

E ·
∑
x∈X

e−βE(x) !
=
∑
x∈X

E(x) · e−βE(x), (A.6)

heavily depending on the energy function E. Comparing (A.5) with (A.4), one interprets β as the inverse
temperature 1/~T of the system.

A.2 Auxiliary statements
A.2.1 On the existence of Lebesgue-numbers
Let (X, d) be a compact metric space and (Ui)i∈I an open covering of X. Then there exists an ε > 0, called
Lebesgue number for the covering, such that

∀x ∈ X : ∃i ∈ I : B(x, ε) ⊆ Ui. (A.7)

A.2.2 Definition: Topological equivalence of metrics

Two metrics d, d̃ on some set X are called topologically equivalent if they induce the same open sets.

A.2.3 Definition: Uniform equivalence of metrics

Two metrics d, d̃ on some set X are called uniformly equivalent if the identity mappings Id : (X, d)→ (X, d̃)

and Id : (X, d̃) → (X, d) are both uniformly continuous. This is equivalent to demanding that for every ε > 0

there exists a δ > 0 such that d(x, y) ≤ δ implies d̃(x, y) ≤ ε and d̃(x, y) ≤ δ implies d(x, y) ≤ ε for all x, y ∈ X.
Note that uniformly equivalent metrics are topologically equivalent.
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A.2.4 Lemma: Uniform equivalence of metrics on compact spaces

Let d, d̃ be two topologically equivalent metrics on some set X such that the metric space (X, d) is compact.
Then d and d̃ are uniformly equivalent metrics.

Proof: As d and d̃ are equivalent, the identity Id : (X, d)→ (X, d̃) is continuous in both directions. As (X, d)

and (X, d̃) are compact, it is uniformly continuous in both directions.

A.2.5 Definition: Continuity module
Let (X1, d1) and (X2, d2) be two metric spaces and f : X1 → X2 some function. Then the mapping ωf :
[0,∞)→ R ∪ {∞} defined by

ωf (δ) := sup {d2(f(x), f(y)) : x, y ∈ X1, d1(x, y) ≤ δ} (A.8)

is called continuity module of f .

Remarks:

(i) If f is bounded then ωf is real and bounded.

(ii) If f is uniformly continuous then ωf is continuous in 0.

A.2.6 Hölder’s inequality
Let (Ω,S, µ) be a measure space and p, q ∈ [1,∞] such that 1

p + 1
q = 1. Then for any measurable f, g : Ω→ C

one has

‖f · g‖1 ≤ ‖f‖p · ‖g‖q . (A.9)

Equivalently, for 0 ≤ α, β ≤ 1 satisfying α+ β = 1 one has∥∥fα · gβ∥∥
1
≤ ‖f‖α1 · ‖g‖

β
1 . (A.10)

A.2.7 Jensen’s inequality
Let (Ω,S, µ) be a probability space and Φ : [0,∞) → R concave. Then for any non-negative function
f ∈ L1(Ω,S, µ) one has ∫

Φ(f) dµ ≤ Φ

[∫
f dµ

]
. (A.11)

A.2.8 Lemma on upper semicontinuity
Let (X, d) be a metric space and (fm)m∈N a sequence of functions fm : X → R∪{±∞}, all upper semicontinuous
in some point x ∈ X. Then their pointwise infimum f = infm∈N fm is also upper semi-continuous in x.

Proof: Suppose the contrary, that is lim sup
m→∞

f(xn) > f(x) for some convergent sequence xn
n→∞−→ x ∈ X. Then

we can w.l.o.g. suppose f(xn) ≥ f(x) + ε ∀n ∈ N for some ε > 0. Choose m0 ∈ N such that fm0(x) ≤ f(x) + ε
2 ,

then infm f(xn) ≥ fm0
(x) + ε

2 for all n ∈ N. In particular fm0
(xn) ≥ fm0

(x) + ε
2 , so that lim sup

n→∞
fm0

(xn) >

fm0
(x), a contradiction to the upper semicontinuity of fm0

at x0.

B Symbols and abbreviations
K: Standing for R or C.
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B(x, r): Closed ball of radius r centered at point x ∈ X of some metric space X.

Bd(x, r): Closed ball of radius r centered at point x ∈ X of some metric space (X, d).

Bo(x, r): Open ball of radius r centered at point x ∈ X of some metric space X.

Bod(x, r): Open ball of radius r centered at point x ∈ X of some metric space (X, d).

diamdA: Diameter of some subset A ⊆ X of a metric space (X, d).∨n
k=1Ak: Refinement of measurable partitions A1, ..,An. See 2.1.1.∨∞
k=1Ak: Limit σ-algebra of all σ [

∨n
k=1Ak] , n ∈ N. See 2.1.1.

Z(S): System of all countable, measurable partitions of the measurable space (X,S). See 2.1.1.

Z1(S, µ): System of all countable, measurable partitions with finite entropy. See 2.1.2.

ΣnT f : Defined as ΣnT f :=
∑n−1
k=0 f ◦ T k for any function f : A→ C, T : A→ A and n ∈ N.

ωf : Continuity module of function f . See A.2.5.

M(S): Set of all probability measures on the measurable space (X,S).

M(S, T ): T -invariant probability measures on the measurable space (X,S), with T : X → X measurable.

Mer(S, T ): T -invariant, ergodic probability measures on the measurable space (X,S), with T : X → X mea-
surable.

Meq(B, T, f): T -invariant equilibrium measures for the function f ∈ C(X) on the metric space (X, d), with
T : X → T continuous. See 3.4.2.
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