Attractors in real-time dynamical systems

Stilianos Louca

June 30, 2011

Abstract

We introduce cluster sets, periodic orbits and attractors for real-time dynamical systems. We furthermore show some basic results considering attractors in topologically transitive systems.

Contents

1	Att	ractors	in real-time dynamical systems	3
	1.1	Prelim	inaries	3
		1.1.1	Definition: Dynamical system	3
		1.1.2	Definition: Real-time system	3
		1.1.3	Definition: Topologically transitive systems	3
		1.1.4	Definition: Convergence towards sets	4
		1.1.5	Definition: Attracting sets	4
		1.1.6	Definition: Forward fixed points	4
		1.1.7	Definition: Future cluster and limit set	4
		1.1.8	Lemma on closures and interiors of invariant sets	4
		1.1.9	Lemma: Characterization of locally attracting sets	5
		1.1.10	Lemma on stable sets	5
	1.2	Future	e cluster sets and periodic orbits	5
		1.2.1	Lemma: Characterization of fixed and periodic points	5
		1.2.2	Theorem: Properties of future cluster and limit sets	6
		1.2.3	Corollary for compact systems	7
		1.2.4	Theorem: Characterization of periodic orbits	7
		1.2.5	Theorem: Characterization of limit cycles	8
	1.3	Attrac	tors	8
		1.3.1	Definition: Attractor	8
		1.3.2	Theorem: Stable sets as attractors	9
		1.3.3	Lemma on continuous functions	9
		1.3.4	Lemma on trapping neighborhoods	9
		1.3.5		10
		1.3.6	Corollary for trapping neighborhoods	10
		1.3.7	Theorem: Attractors as stable sets	11
		1.3.8	Lemma on decreasing compact sets	11
		1.3.9	Theorem: Characterization of attractors	11
		1.3.10	Theorem: Existence of attractors	12
		1.3.11	Corollary: Existence of attractors	12
			Example: Non-minimal attractors	
	1.4	Attrac	tors in topologically transitive systems	13
		1.4.1	Lemma: Characterization of topologically transitive systems	
		1.4.2	Theorem: Attractors in topologically transitive systems	
		1.4.3	Corollary about topologically transitive attractors	

A	Appendix		14
	A.0.4	Lemma: Separating compacts in Hausdorff spaces	14
	A.0.5	Lemma: Necessary condition for locally compact spaces	14

Author notice

This is an article about cluster points and attractors in real-time dynamical systems that resulted rather spontaneously from personal reflections on the subject in 2011. It is not peer-reviewed! The article assumes basic knowledge of topology, as provided for example in [2]. Most of the definitions were taken from [3], albeit with some modifications. A more thorough elaboration on the subjects mentioned can be found in [5].

I would be more than glad about any corrections or suggestions for further improvement You may give me. You can contact me at *stilianos.louca.apple@uni-jena.de*, without the *fruit*.

1 Attractors in real-time dynamical systems

1.1 Preliminaries

1.1.1 Definition: Dynamical system

An abelian semi-group (G, +), to be called **time domain**, acting on a non-empty set $X \neq \emptyset$ is called a **semi-flow** on X. We call (X, G) a **dynamical system**. If G is a group, we call G a **flow** and (X, G) an **invertible** dynamical system. For $x \in X$ and $g \in G$, we interpret g(x) as point reached after time g, starting from the start point x.

If X is a topological space and each g acts on X as an continuous (open, closed) mapping, we call the system **space-continuous** (**space-open**, **space-closed**). Note that for invertible systems space-continuity is equivalent to space-openness and equivalent to space-closeness.

If X is a topological space, G a topological group and the action $G \times X \to X$, $(g, x) \mapsto g(x)$ is continuous with respect to the product topology on $G \times X$, then (G, X) shall be called a **continuous** dynamical system. It shall be called **time-continuous** if the action $(g, x) \mapsto g(x)$ is continuous in time for every fixed start point x. Note that continuous systems are space- and time-continuous, with the reverse not always being true.

For any $x \in X$ we call the set $Gx := (g(x))_{g \in G}$ the **orbit** of x under the semi-flow G. A point $x \in X$ is called **periodic**, if g(x) = x for some time $g \neq Id$. An orbit Gx is called **periodic** if it contains a periodic point.

A point $x_0 \in X$ is called a **fixed point** of the system if $g(x_0) = x_0$ for all $g \in G$. We call a set $A \subseteq X$ **invariant** to the semi-flow, if g(A) = A for all $g \in G$. Note that for invertible systems this is equivalent to $g(A) \subseteq A$ for all $g \in G$.

1.1.2 Definition: Real-time system

We call a dynamical system (X, G) a **real-time** system if $G = [0, \infty)$ or $G = \mathbb{R}$. In that case we write $G_t : X \to X$ for the mapping induced on X by $t \in \mathbb{R}$. For any point $x \in X$, we call $(G_t(x))_{t\geq 0}$ the **future** orbit of x under the semi-flow. It is called **completely periodic**, if $G_t(x) = x$ for some t > 0.

We call a set $A \subseteq X$ forward invariant to the semi-flow if $G_t(A) \subseteq A$ for all $t \ge 0$. Note that for invertible real-time systems, invariance of a set in $(X, (G_t)_{t\ge 0})$ is equivalent to the invariance of the set in $(X, (G_t)_{t\in \mathbb{R}})$.

1.1.3 Definition: Topologically transitive systems

A dynamical system (X, G) on the topological space X is called **topologically transitive** if for every pair of non-empty open sets U and V in X, there exists some $g \in G$ such that $g(U) \cap V \neq \emptyset$. We call an invariant set $A \subseteq X$ **topologically transitive** if the restriction $(A, G|_A)$ constitutes a topologically transitive dynamical system.

Remarks:

- (i) If (X, G) is a real-time, invertible dynamical system, then $(X, (G_t)_{t \ge 0})$ is topologically transitive if and only if $(X, (G_t)_{t \in \mathbb{R}})$ is topologically transitive.
- (ii) Some authors choose to define topological transitivity as the condition of the existence of a dense orbit in X. In general topological spaces, neither definition implies the other.

1.1.4 Definition: Convergence towards sets

Let X be a topological space and $A \subseteq X$ some set. We say that a net¹ (Moore-Smith sequence) $(x_i)_{i \in I}$ converges towards A if for every neighborhood B of A the sequence is eventually in B.

Remarks:

- (i) Let (X, d) be a metric space and $A \subseteq X$. If the net $(x_i)_i$ converges towards A, then $d(A, x_i) \stackrel{i}{\longrightarrow} 0$.
- (ii) The inverse statement is true provided that A is a compact set.

1.1.5 Definition: Attracting sets

Let (X, G) be a real-time dynamical system on the topological space X and $A \subseteq X$ some set. A neighborhood $B \subseteq X$ of A is called a **neighborhood of attraction** if for all $y \in B$ one has $G_t(y) \xrightarrow{t \to \infty} A$. The union of all orbits eventually converging to A is called its **basin of attraction**.

A set $A \subseteq X$ is called **Lyapunov stable**, if for each neighborhood $B \subseteq X$ of A there exists a neighborhood $C \subseteq X$ of A such that $G_t(C) \subseteq B$ for all $t \ge 0$. It is called **locally attracting** if it has a neighborhood of attraction and **globally attracting** if the whole space X is a neighborhood of attraction for A.

Remark: The above notions of stability typically only make sense for forward invariant sets A.

1.1.6 Definition: Forward fixed points

Let (X, G) be a real-time dynamical system. A point $x_0 \in X$ is called a **forward fixed point** if $G_t(x) = x$ for all $t \ge 0$. Now let X be a topological space. A forward fixed point x_0 is called **Lyapunov stable** if $\{x_0\}$ is Lyapunov stable, that is if for any neighborhood U of x_0 there exists a neighborhood V of x_0 , such that $G_t(V) \subseteq U \ \forall t \ge 0$. It is called **locally attracting** if there exists a neighborhood U of x_0 such that for all $x \in U$ one has $G_t(x) \xrightarrow{t \to \infty} x_0$. It is called **globally attracting** if for all $x \in X$ one has $G_t(x) \xrightarrow{t \to \infty} x_0$.

It is called **asymptotically stable** if it is both Lyapunov stable and locally attracting, otherwise it is called **unstable**. It is called **globally asymptotically stable** if it is Lyapunov stable and globally attracting.

1.1.7 Definition: Future cluster and limit set

Let (X, G) be a real-time dynamical system on the topological space X and $x \in X$. A point $y \in X$ is called a **future cluster point** of x if for every neighborhood U of y the future orbit $(G_t(x))_{t\geq 0}$ is frequently² in U. It is called a **future limit point** (ω -limit point) of x if $G_{t_n}(x) \xrightarrow{n \to \infty} y$ for some sequence $0 \le t_1 < t_2 < ... \to \infty$. We shall write $G_{cl}(x)$ and $G_{lim}(x)$ for the set of all future cluster points and all future limit points of x respectively, to be called **future cluster set** and **future limit set** of x.

1.1.8 Lemma on closures and interiors of invariant sets

Let (X,G) be a real-time dynamical system on the topological space X and $A \subseteq X$ some set. Then:

1. If the system is space-continuous and A forward invariant, the closure \overline{A} is forward invariant.

¹Sequences indexed over directed sets. We summarize:

- A function $f: X \to Y$ between topological spaces X, Y is continuous if an only if for every net $(x_{\alpha})_{\alpha} \subseteq X$ converging towards $x \in X$, the net $(f(x_{\alpha}))_{\alpha}$ converges towards f(x).
- A space X is compact if and only if every net $(x_{\alpha})_{\alpha} \subseteq X$ has a subnet with a limit in X.
- A subset A of a space X is closed if and only if, every limit of a net with elements in A, is again in A.
- A net has a limit if and only if all of its subnets have limits. In that case, every limit of the net is also a limit of every subnet.
- If X is Hausdorff, then every net in X has at most one limit.
- A net in a product space has a limit if and only if each projection of the net has a limit, equal to the projection of the limit.
- Every sequence is a net. But subnets of sequences are not always subsequences!
- Subnets of subnets of a net are also subnets of that net.
- If a net is frequently in some set A, then it has a subnet which is eventually in A.

See [2] for more on nets and their connection to the topology of a space.

²A net $(x_{\alpha})_{\alpha \in A}$ is **frequently** in some set U if for every $a \in A$ there exists a $b \in A$ with $x_b \in U$.

- 2. If the system is space-open and A forward invariant, the interior A^{o} is forward invariant.
- 3. If the system is space-continuous and space-closed and A invariant, the closure \overline{A} is invariant.
- 4. If the system is invertible and space-continuous and A (forward) invariant, then both A^o and \overline{A} are (forward) invariant.
- 5. If the system is invertible and space-continuous and A invariant, then the border ∂A is invariant.

Proof:

- 1. It suffices to show that $\overline{A} \subseteq G_t^{-1}(A)$ for $t \ge 0$, since then $G_t(\overline{A}) \subseteq G_t(G_t^{-1}(\overline{A})) \subseteq \overline{A}$. Indeed, $G_t^{-1}(\overline{A})$ is by continuity of G_t a closed set including A.
- 2. Since $G_t(A^o)$ is for each $t \ge 0$ an open set included in A, one has indeed $G_t(A^o) \subseteq A^o$.
- 3. In a similar way as in (1), one shows that $G_t(A) \subseteq A$ for all $t \ge 0$. Furthermore, $G_t(\overline{A})$ is for all $t \ge 0$ a closed set containing $G_t(A)$ and thus A, hence also \overline{A} . If the system is invertible, the invariance of A in $(X, (G_t)_{t\ge 0})$ implies the invariance of the set in $(X, (G_t)_{t\in \mathbb{R}})$.
- 4. Note that the system is because of invertibility also space-open and space-closed. By the previous points, it suffices to show that $G_t(A^o)$ is invariant, provided that A is invariant. Since $G_t(A^o)$ is for each $t \in \mathbb{R}$ an open set included in A, one has $G_t(A^o) \subseteq A^o$ for all $t \in \mathbb{R}$. As the system is invertible, this already implies the invariance of A.
- 5. For each $t \in \mathbb{R}$, $G_t : X \to X$ is bijective and by the previous points one has $G_t(A^o) = A^o$ and $G_t(\overline{A}) = \overline{A}$. Thus $\partial A = \overline{A} \setminus A^o = G_t(\overline{A}) \setminus G_t(A^o) = G(\overline{A} \setminus A^o) = G_t(\partial A)$.

1.1.9 Lemma: Characterization of locally attracting sets

Let (X, G) be a real-time, space-continuous dynamical system on the topological space X and $A \subseteq X$ some set. Then A is locally attracting if and only if its basin of attraction B is open. In that case one has $B = \bigcup_{t\geq 0} G_t^{-1}(U)$ for any arbitrary neighborhood of attraction U.

Proof: Direction " \Leftarrow " is trivial. Now suppose A to be locally attracting and let U be some neighborhood of attraction for A. Set $\Omega := \bigcup_{t\geq 0} G_t^{-1}(U)$ and let B be then basin of attraction of A. Then $B \subseteq \Omega$, since every orbit starting in B eventually plunges into U. But by construction of Ω , every orbit starting in Ω passes by U and, since U is a neighborhood of attraction, eventually converges to A. Thus also $\Omega \subseteq B$. Since U can be chosen to be open, $\Omega = B$ is open by continuity of each G_t .

1.1.10 Lemma on stable sets

Let (X, G) be a real-time, space-open dynamical system on the topological space X and $A \subseteq X$ a Lyapunov stable, locally attracting set. Then for each neighborhood B of A there exists a forward invariant neighborhood of attraction for A, included in B.

Proof: Let U be some neighborhood of attraction for A. We can suppose that $U \subseteq B$, otherwise $U \cap B$ would do the job. Note \mathcal{V} the set of all neighborhoods V of A such that $G_t(V) \subseteq U$ for all $t \ge 0$. By the Lyapunov stability of A, \mathcal{V} is not empty. Note that if $V \in \mathcal{V}$, then also $G_t(V) \in \mathcal{V}$ for all $t \ge 0$ by openness of G_t . Thus, the set $\Omega := \bigcup_{V \in \mathcal{V}} V$ is a forward invariant neighborhood of A. Moreover, since $\Omega \subseteq U$, it is a neighborhood of attraction.

1.2 Future cluster sets and periodic orbits

1.2.1 Lemma: Characterization of fixed and periodic points

Let (X, G) be a real-time dynamical system on the Hausdorff space X and $x \in X$. Then:

- 1. x is a forward fixed point if and only if there exists an $\varepsilon > 0$ such that $G_t(x) = x$ for all $0 \le t \le \varepsilon$.
- 2. Suppose the system is time-continuous. Then x is a periodic, non forward fixed point if and only if there exists a smallest $t_0 > 0$ such that $G_{t_0}(x) = x$. That time t_0 is called the **period** of x.

Proof:

- 1. Follows from the definition and the fact that G acts as a semi-group.
- 2. Direction " \Leftarrow " follows from the relevant definitions. Let x be non forward fixed and periodic. We shall show that the set

$$T_x := \{t > 0 : G_t(x) = x\} \neq \emptyset \tag{1.1}$$

is closed in \mathbb{R} , so that $t_0 := \min T_x$ satisfies the mentioned properties³.

Let $0 < t_0 \notin T_x$, that is $G_{t_0}(x) \neq x$. Then as X is Hausdorff, by time-continuity of the system there exists a neighborhood $U \subseteq (0, \infty)$ of t_0 such that $G_t(x) \neq x$ for all $t \in U$. This shows that $U \cap T_x = \emptyset$ and that T_x is closed in $(0, \infty)$. Left to show is that, 0 is not a limit point of T_x . Indeed, suppose that there exists $(t_n)_n \subseteq T_x$ such that $t_n \xrightarrow{n \to \infty} 0$. Then each time t > 0 can be approximated by integer multiples of adequately small members of $(t_n)_n$, that is t is a limit point of T_x and thus within T_x . This would mean that x is a forward fixed point, a contradiction.

1.2.2 Theorem: Properties of future cluster and limit sets

Let (X,G) be a real-time dynamical system on the topological space X and $x \in X$. Then:

- 1. $G_{\lim}(x) \subseteq G_{\operatorname{cl}}(x)$. The reverse is true provided that X is first-countable.
- 2. The future cluster set $G_{cl}(x)$ is closed in X.
- 3. If the system is space-continuous, then $G_{cl}(x)$ as well as $G_{lim}(x)$ are forward invariant sets.
- 4. If the system is space-continuous and invertible, then $G_{cl}(x)$ as well as $G_{lim}(x)$ are invariant sets.
- 5. Let X be Hausdorff and $K \subseteq X$ be compact. If the future orbit $(G_t(x))_{t\geq 0}$ converges to K, then $G_{cl}(x)$ is a compact subset of K.
- 6. Let the system be time-continuous, X be Hausdorff and $K \subseteq X$ be compact, enclosed by a compact neighborhood. If the future orbit $(G_t(x))_{t\geq 0}$ converges to K, then $G_{cl}(x)$ is a non-empty, connected, compact subset of K.
- 7. Let the system be time-continuous, X be Hausdorff and $K \subseteq X$ be compact, enclosed by a compact neighborhood. If the future cluster set $G_{cl}(x)$ is non-empty and completely within K, then the future orbit of x converges to K.

Proof:

- 1. Trivial.
- 2. Let $y \notin G_{cl}(x)$, then there exists an open neighborhood U of y such that $(G_t(x))_{t\geq 0}$ is eventually in U^c . As U is a neighborhood for all of its points, $x \in U \subseteq X \setminus G_{cl}(x)$, proving that $G_{cl}(x)$ is closed.
- 3. Let $y \in G_{cl}(x)$ and $\tau \ge 0$, we show that $G_{\tau}(y) \in G_{cl}(x)$. For any neighborhood U of $G_{\tau}(y)$ we can by continuity of G_{τ} choose a neighborhood V of y such that $G_{\tau}(V) \subseteq U$. Then for any $t \ge 0$ there exists an $s \ge t$ such that $G_s(x) \in V$, hence $G_{s+\tau}(x) \in U$, which was to be shown.

Now let $y \in G_{\lim}(x)$, that is $y = \lim_{n \to \infty} G_{t_n}(x)$ for some $0 \le t_1 < t_2 < ... \to \infty$. Then for any $\tau \ge 0$ one has by continuity $G_{\tau}(y) = \lim_{n \to \infty} G_{\tau}(G_{t_n}(x)) = \lim_{n \to \infty} G_{t_n+\tau}(x)$, which shows that $G_{\tau}(y) \in G_{\lim}(x)$.

- 4. Similar to (3), using the characterization of invariance mentioned in 1.1.1.
- 5. Let $y \in G_{cl}(x)$ be some future cluster point of x. Then every neighborhood U of y intersects every neighborhood V of K. Since both $\{y\}$ and K are compacts, by lemma A.0.4 $y \in K$, that is $G_{cl}(x) \subseteq K$. Since by (2) $G_{cl}(x)$ is closed, it is compact.

³It is easy to see that the period t_0 is a generator of the additive semi-group $T_x \cup \{0\}$.

6. Suppose $\widetilde{K} \subseteq X$ to be some compact neighborhood of K and $G_{cl}(x)$ not to be connected. Then $G_{cl}(x)$ would consist of two disjoint, non-empty compact parts $K_1, K_2 \subseteq K$. By lemma A.0.4 there would exist two disjoint, open (in X) sets U_1, U_2 , each enclosing one of the two parts. We may of course assume that $U_1, U_2 \subseteq \widetilde{K}$. As $(G_t(x))_{t\geq 0}$ converges to K, it would eventually have to be within \widetilde{K} . As x has cluster points in K_1 as well as K_2 , it passes from U_1 to U_2 and vice versa an infinite number of times. As U_1, U_2 are disjoint open sets and the orbit $G(x) : [0, \infty) \to \mathbb{R}$ continuous, it would have to exit the set $U_1 \cup U_2$ and pass by $R := \widetilde{K} \setminus (U_1 \cup U_2)$ an infinite number of times. As R is a compact set, the orbit would have at least one cluster point in R, a contradiction to $G_{cl}(x)$ being enclosed by $U_1 \cup U_2$.

Clearly $G_{\rm cl}(x)$ is non-empty since the orbit is eventually within the compact \widetilde{K} . The rest is given by point (5).

7. Let $\widetilde{K} \subseteq X$ be some compact neighborhood of K and U some arbitrary neighborhood of K. We show that $\Gamma_x := (G_t(x))_{t\geq 0}$ is eventually within U. We can w.l.o.g. assume $U \subseteq \widetilde{K}$ and U to be open. Now suppose Γ_x to be frequently in U^c . As Γ_x has a cluster point in K, it is also frequently in U. By time-continuity, it thus passes frequently by ∂U . As $\partial U \subseteq K$ is compact, Γ_x possesses in ∂U a cluster point. As $\partial U \cap U = \emptyset$, that cluster point is not within K, a contradiction!

1.2.3 Corollary for compact systems

Let (X, G) be a real-time, time- and space-continuous dynamical system on the compact Hausdorff space X. Then for every $x \in X$, the future cluster set $G_{cl}(x)$ is a non-empty, connected, compact, forward invariant set.

Proof: Trivially, the orbit $(G_t(x))_{t\geq 0}$ converges to the compact X. By theorem 1.2.2 follows the affirmation.

Note: The future cluster set G_{cl} need not be an orbit its self⁴. However, if $G_{cl}(x)$ is a completely periodic future orbit of the system and disjoint from the orbit $(G_t(x))_{t\geq 0}$, it is called a **future limit cycle** (ω -limit cycle) (of x).

1.2.4 Theorem: Characterization of periodic orbits

Let (X, G) be a real-time, time-continuous, space-continuous dynamical system on the Hausdorff space X. Then a future orbit $\Gamma := (G_t(x))_{t\geq 0}$ is compact if and only if it is periodic. In that case, there exists a *smallest time* $t_0 \geq 0$ such that $G_{t_0}(x)$ is periodic. Furthermore, $G_{cl}(x)$ is the future orbit of $G_{t_0}(x)$ and consists of all periodic points of Γ . If furthermore the system is invertible, then Γ is completely periodic.

Proof: The proof is inspired by [5]. See [6] for a generalization. Direction " \Leftarrow " is trivial. Suppose now $\Gamma := (G_t(x))_{t\geq 0}$ to be compact, so that one has $\emptyset \neq G_{cl}(x) \subseteq \Gamma$. Suppose Γ to be non-periodic. The mapping $\mathbb{R}_+ := [0, \infty) \to X$, $t \mapsto G_t(x)$ is then injective. By time-continuity of the system, every segment $\Gamma_n := (G_t(x))_{t\leq n}$ is a compact and thus closed subset of Γ . As Γ contains $G_{cl}(x) \neq \emptyset$, there exists a point $y \in \Gamma$ such that each neighborhood of y is visited by the future orbit at arbitrarily late times, that is intersects $(G_t(x))_{t>n} = \Gamma \setminus \Gamma_n$ for all $n \in \mathbb{N}$. Thus $y \in \overline{\Gamma \setminus \Gamma_n}$ for all $n \in \mathbb{N}$. As $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$, by lemma A.0.5 Γ can not be locally compact Hausdorff, a contradiction! Thus Γ is indeed periodic.

$$T_{\rm cl} := \{t \ge 0 : G_t(x) \in G_{\rm cl}(x)\}.$$
(1.2)

We have already seen that $T_{cl} \neq \emptyset$. We show that T_{cl} is closed in $\mathbb{R}_+ := [0, \infty)$, by showing that its complement $T_{cl}^c := \mathbb{R}_+ \setminus T_{cl}$ is open in \mathbb{R}_+ . Let $0 \leq t_0 \notin T_{cl}$, that is $G_{t_0}(x) \notin G_{cl}(x)$. By lemma 1.2.2(2), $G_{cl}(x)$ is closed in X, so that there exist an open neighborhood $U \subseteq X$ of $G_{t_0}(x)$ not intersecting $G_{cl}(x)$. As the system is time-continuous, there exists an open neighborhood $\widetilde{U} \subseteq \mathbb{R}_+$ of t_0 such that $G_t(x) \in U$ for all $t \in \widetilde{U}$, that is $\widetilde{U} \subseteq T_{cl}^c$.

Thus the minimum $t_0 := \min T_{cl}$ exists. We note $\Gamma_0 := (G_t(x))_{t \ge t_0}$ the future orbit of $G_{t_0}(x)$. By lemma 1.2.2(3) and space-continuity of the system, future cluster sets are forward invariant, so that $\Gamma_0 \subseteq G_{cl}(x)$. By choice of t_0 , one has actually $G_{cl}(x) = \Gamma_0$. Indeed, if $G_{t_1}(x) \in G_{cl}(x) \setminus \Gamma_0$ for some $t_1 \ge 0$, this would imply $t_1 < t_0$, a contradiction to the minimality of t_0 .

⁴It could for example consist of the whole space, if the future orbit $(G_t(x))_{t\geq 0}$ was dense in X.

We now show that, the periodic points of Γ are exactly its cluster points. Indeed, each periodic point is obviously a cluster point. Inversely, let $x_1 := G_{t_1}(x)$ be a cluster point of Γ for some time $t_1 \ge 0$. As Γ is periodic, the future orbit $\Gamma_1 := (G_t(x))_{t \ge t_1+1}$ is actually given by $(G_t(x))_{t_1+1 \le t \le T}$ for some $T \ge 0$ adequately large. By time-continuity of the system, Γ_1 is therefore compact. As $G_{cl}(x) = G_{cl}(G_{t_1+1}(x)) \subseteq \Gamma_1$, x_1 is in Γ_1 , that is, re-attained at some later time $t > t_1$ and thus periodic.

Now suppose the system to be invertible and $t_0 \ge 0$ such that $x_0 := G_{t_0}(x)$ is a periodic point, with $G_T(x_0) = x_0$ for some T > 0. Then $x = G_{-t_0}(x_0) = G_{-t_0}(G_{t_0+T}(x)) = G_T(x)$, showing that x is periodic its self.

1.2.5 Theorem: Characterization of limit cycles

Let (X, G) be a real-time, time-continuous, space-continuous dynamical system on the locally compact Hausdorff space X. Let $\Gamma_x := (G_t(x))_{t\geq 0}$ be a completely periodic future orbit. Let $\Gamma_y := (G_t(y))_{t\geq 0}$ be some future orbit and $G_{cl}(y)$ the future cluster set of y. Then the following are equivalent:

- 1. Γ_y converges towards the set Γ_x .
- 2. $G_{\rm cl}(y) = \Gamma_x$.
- 3. $\emptyset \neq G_{\rm cl}(y) \subseteq \Gamma_x$.

If $\Gamma_x \cap \Gamma_y = \emptyset$, then Γ_x is a future limit cycle of y if and only if any of the above holds.

Proof: Note that as the system is time-continuous and Γ_x periodic, Γ_x is compact as a set.

(1) \Rightarrow (2): As X is locally compact and Hausdorff, there exists a compact neighborhood of Γ_x . Thus by 1.2.2(6), $G_{cl}(y)$ is a non-empty, compact subset of Γ_x . We show that actually $\Gamma_x \subseteq G_{cl}(y)$. Fix some future cluster point $x_0 \in \Gamma_x$ of Γ_y . For any $t_0 \ge 0$ and any neighborhood V of $G_{t_0}(x_0)$, let $U \subseteq X$ be a neighborhood of x_0 such that $G_{t_0}(U) \subseteq V$. Then, as Γ_y is frequently in U, it is also frequently in V, so that $G_{t_0}(x_0)$ is also a future cluster point of y. This shows that $\Gamma_x = G_{cl}(y)$.

 $(2) \Rightarrow (3)$: Trivial.

(3) \Rightarrow (1): As X is locally compact and Hausdorff, Γ_x is enclosed by a compact neighborhood. Thus, lemma 1.2.2(7) applies.

The last affirmation follows from the definition of a future limit cycle.

1.3 Attractors

1.3.1 Definition: Attractor

Let (X, G) be a real-time dynamical system on the topological space X. A compact, invariant set $\emptyset \neq A \subseteq X$ is called an **attractor** if there exists a forward invariant neighborhood $U \subseteq X$ of A, such that $A = \bigcap_{t \geq 0} G_t(U)$. The attractor is called **global**, if $A = \bigcap_{t \geq 0} G_t(X)$. It is called **minimal** if it does not strictly contain any other attractors.

Remarks:

- (i) A is locally maximal in the following sense: Every invariant set $B \subseteq U$, that is satisfying $G_t(B) = B \forall t \ge 0$, is included in A.
- (ii) In particular if (X, G) is invertible: Every orbit completely included in U lies in fact completely within A.
- (iii) If (X,G) is invertible, the invariance of A follows from the rest of the definition.
- (iv) For any other set V between A and U, that is $A \subseteq V \subseteq U$, one has $A = \bigcap_{t>0} G_t(V)$ as well.
- (v) If A is an attractor in (X, G) and $B \subseteq X$ some forward invariant set containing A, then A is also an attractor for the smaller system $(B, (G_t|_B)_{t\geq 0})$.
- (vi) A global attractor is unique and includes all other attractors of the system.

1.3.2 Theorem: Stable sets as attractors

Let (X, G) be a real-time, space-open and space-continuous dynamical system on the locally compact Hausdorff space X. Then every compact, invariant, Lyapunov stable and locally attracting set $A \subseteq X$ is an attractor. As a special case, every asymptotically stable, forward fixed point is an attractor.

Proof: Let V be an open neighborhood of attraction for A. Since A is compact and X locally compact Hausdorff, there exists a compact neighborhood K of A, included in U. By lemma 1.1.10, there exists a forward invariant neighborhood U of attraction for A, included in K. We show that $A = \bigcap_{t\geq 0} G_t(U)$. Obviously $A \subseteq \bigcap_{t\geq 0} G_t(U)$ since A is invariant, so that it suffices to show $\bigcap_{t\geq 0} G_t(U) \subseteq A$. Since the space is Hausdorff, it suffices to show that for any open neighborhood B of A one has $\bigcap_{t\geq 0} G_t(U) \subseteq B$. By lemma 1.1.10, it suffices to consider forward invariant B-s. For such a B and $m \in \mathbb{N}$ let

$$V_{B,m} := \{ x \in V : G_m(x) \in B \} = G_m^{-1}(B) \cap V.$$
(1.3)

By positive invariance of B one has $V_{B,m} \subseteq V_{B,m+1}$. By continuity of G_m each $V_{B,m}$ is open. Furthermore, by choice of V one has $V \subseteq \bigcup_{m \in \mathbb{N}} V_{B,m}$. Since K is compact and included in V, there exists an M_B such that $K \subseteq \bigcup_{m=1}^{M_B} V_{B,m} = V_{B,M_B}$. Since U is included in K, also $U \subseteq V_{B,M_B}$, that is $G_{M_B}(U) \subseteq B$. Thus $\bigcap_{t \geq 0} G_t(U) \subseteq G_{M_B}(U) \subseteq B$.

1.3.3 Lemma on continuous functions

Let T, X, Y be topological spaces and $G: T \times X \to Y$, $(t, x) \mapsto G_t(x)$ continuous. Let $U \subseteq Y$ be open and $I \subseteq T$ be compact. Then the set

$$\Omega := \bigcap_{t \in I} G_t^{-1}(U) \tag{1.4}$$

is open in Y.

Proof: This proof uses the characterization of continuity and compactness via nets. Let $x \in \Omega$ and note \mathcal{V} the system of neighborhoods of x, considered as a directed set with respect to the inclusion. Now suppose that for every neighborhood $V \in \mathcal{V}$ of x, one has $V \nsubseteq \Omega$, that is, there exist $(t_V, x_V) \in I \times V$ such that $G_{t_V}(x_V) \notin U$. Note that the net $(x_V)_{V \in \mathcal{V}}$ converges towards x. As I is compact, there exists a subnet $(t_{\widetilde{V}})_{\widetilde{V}}$ of $(t_V)_{V \in \mathcal{V}}$ that converges towards some $t \in I$. Since the subnet $(x_{\widetilde{V}})_{\widetilde{V}}$ still converges towards x, the subnet $(t_{\widetilde{V}}, x_{\widetilde{V}})_{\widetilde{V}}$ converges towards (t, x). By continuity of G, this implies that $(G_{t_{\widetilde{V}}}(x_{\widetilde{V}}))_{\widetilde{V}}$ converges towards $G_t(x) \in U$. But this is a contradiction, since $G_{t_{\widetilde{V}}}(x_{\widetilde{V}}) \in U^c$ and U^c is closed. Thus, $x \in V \subseteq \Omega$ for some neighborhood V of x.

1.3.4 Lemma on trapping neighborhoods

Let (X, G) be a real-time, continuous dynamical system on the Hausdorff space X and $A \subseteq X$ some forward invariant set. Let $K \subseteq X$ be a compact neighborhood of A such that $A \supseteq \bigcap_{t \ge 0} G_t(K)$. Then there exists a forward invariant, open neighborhood Ω of A such that $A \subseteq \Omega \subseteq K^o$.

Proof: The following proof is a generalization of the proof found in [1] for the discrete case to the real-time case. For $t_0 \ge 0$ define

$$\Omega_{t_0} := \bigcap_{0 \le t \le t_0} G_t^{-1}(K^o).$$
(1.5)

as the set of start-points in K^o staying within K_o up to time t_0 . By lemma 1.3.3, each Ω_{t_0} is open. As $A \subseteq K^o$ is forward invariant, $A \subseteq \Omega_{t_0}$. Moreover, $G_{\tau}(\Omega_{t_0}) \subseteq \Omega_{t_0-\tau}$ for every $0 \leq \tau \leq t_0$ and $\Omega_{t_0} \supseteq \Omega_{t_1}$ for every $0 \leq t_0 \leq t_1$. We define

$$\Omega := \bigcap_{t_0 \ge 0} \Omega_{t_0} \tag{1.6}$$

as the set of start-points in K^o always staying within K^o . Note that $A \subseteq \Omega \subseteq K^o$. Furthermore, Ω is forward invariant, since $G_{\tau}(\Omega) \subseteq \bigcap_{t_0 \geq \tau} \Omega_{t_0-\tau} = \Omega$ for every $\tau \geq 0$.

Claim: Either $\Omega_{t_0} \supseteq \Omega_{t_1}$ for all $0 \le t_0 < t_1$ or $\Omega = \Omega_{t_0}$ for some $t_0 \ge 0$.

Proof: Suppose the first variant to be false, that is $\Omega_{t_0} = \Omega_{t_1}$ for some $0 \leq t_0 < t_1$. Call $\varepsilon := (t_1 - t_0)$. We shall show that $\Omega_{t_0} = \Omega_{t_0+n,\varepsilon}$ for all $n \in \mathbb{N}$, which would prove the claim. Indeed, suppose $x \in \Omega_{t_0}$, then $(G_t(x))_{t=0}^{t_1} \subseteq K^o$ and thus $(G_t(G_{\varepsilon}(x)))_{t=0}^{t_0} \subseteq K^o$ which implies $G_{\varepsilon}(x) \in \Omega_{t_0}$. This again means that $G_{\varepsilon}(x) \in \Omega_{t_1}$, that is $(G_t(x))_{t=\varepsilon}^{t_1+\varepsilon} \subseteq K^o$ and therefore $(G_t(x))_{t=0}^{t_0+2\varepsilon} \subseteq K^o$, thus $x \in \Omega_{t_0+2\varepsilon}$. The rest follows by induction.

Claim: $\Omega = \Omega_{t_0}$.

Proof: Suppose the contrary, then $\Omega_{t_0} \supseteq \Omega_{t_1}$ for all $0 \le t_0 < t_1$. We shall show that $G_t(A) \nsubseteq A$ for some $t \ge 0$, a contradiction!

Choose $x_n \in \Omega_n \setminus \Omega_{n+1}$ and set $y_n := G_n(x_n)$ for every $n \in \mathbb{N}$. Consider $(y_n)_n$ as a net. Then by compactness of K, there exists a subnet (not necessarily subsequence!) $(y_{n(k)})_{k \in I}$ of $(y_n)_n$ that converges towards some $y \in K$. Now each y_n belongs to the intersection $\bigcap_{0 \leq t \leq n} G_n(K)$, since $y = G_n(x_n) = G_t(G_{n-t}(x_n)) \in G_t(K)$ for each $0 \leq t \leq n$. Otherwise said, for each $t \geq 0$ the sequence $(y_n)_n$ is eventually in $G_t(K)$, a property shared by the subnet $(y_{n(k)})_{k \in I}$. Since G_t is continuous and X Hausdorff, each $G_t(K)$ is compact and therefore closed. Thus, the limit ylies within each of the $G_t(K)$. As $\bigcap_{t\geq 0} G_t(K) \subseteq A$, we find that $y \in A$. On the other hand $x_n \notin \Omega_{n+1}$, implying that $G_{\varepsilon_n}(y_n) \notin K^o$ for some $0 \leq \varepsilon_n \leq 1$ for every $n \in \mathbb{N}$. As [0,1] is compact, we can suppose $(\varepsilon_{n(k)})_{k\in I}$ to be converging towards some $t \in [0,1]$. Thus the subnet $(t_{n(k)}, y_{n(k)})_{k\in I}$ converges towards (t, y). Since $G : \mathbb{R}_+ \times X \to X$ is continuous, we find that $G_t(y) = \lim_{k\in I} G_{t_{n(k)}}(y_{n(k)}) \notin K^o$, since $(K^o)^c$ is closed. This implies $G_t(y) \notin A$, since $A \subseteq K^o$. Together with $y \in A$, this is a contradiction!

Thus $\Omega = \Omega_{t_0}$ for some $t_0 \ge 0$, that is Ω_{t_0} is indeed an open neighborhood of A.

Remark: The proof actually shows that such a forward invariant neighborhood Ω is given by the set of all start-points in K^o whose future orbits stay within K^o . This so constructed Ω is the greatest forward invariant neighborhood of A included within K^o . The proof also reveals that there exists some $t_0 \geq 0$, such that Ω is characterized as being the set of all start-points in K^o whose orbits stay within K^o .

1.3.5 Lemma: Neighborhoods of attraction in trapping neighborhoods

Let (X, G) be a real-time, continuous dynamical system on the Hausdorff space X and $A \subseteq X$ some forward invariant, compact set. Let $K \subseteq X$ be a compact neighborhood of A such that $\bigcap_{t\geq 0} G_t(K) \subseteq A$. Then every forward invariant neighborhood Ω of A included in K is a neighborhood of attraction for A.

Proof: Let *B* be some neighborhood of *A* and $x_0 \in \Omega$. We show that the future orbit $(x(t))_{t\geq 0} := (G_t(x_0))_{t\geq 0}$ is eventually in *B*. We can assume that $B \subseteq K$. Now since *B* is included in a compact and $A \subseteq B^o$ is compact and *X* Hausdorff, there exists a compact neighborhood \widetilde{K} of *A* included in *B*. It satisfies $\bigcap_{t\geq 0} G_t(\widetilde{K}) \subseteq$ $\bigcap_{t\geq 0} G_t(K) \subseteq A$ and contains therefore by lemma 1.3.4 a forward invariant neighborhood \widetilde{B} of *A*. To sum it up, we can suppose *B* to be already forward invariant.

It thus suffices to show that $(x(t))_{t\geq 0}$ passes by B. Suppose the contrary, that is $x(t) \notin B$ for all $t \geq 0$. Since K is compact, the orbit $(x(t))_{t\geq 0}$ has a cluster point x in K.

Since Ω is forward invariant, the sets $G_t(\Omega)$ are decreasing with increasing t. Thus $x(t) \in G_{t_0}(\Omega)$ for all $0 \leq t_0 \leq t$, that is, for every $t_0 \geq 0$ the orbit $(x(t))_{t\geq 0}$ is eventually in $G_{t_0}(\Omega)$. Since $\overline{\Omega}$ is compact, being closed within the compact set K, each $G_{t_0}(\overline{\Omega})$ is compact and thus closed. Thus the cluster point x is within each $G_{t_0}(\overline{\Omega})$ and consequently in the intersection $\bigcap_{t\geq 0} G_t(\overline{\Omega}) \subseteq \bigcap_{t\geq 0} G_t(K) \subseteq A$. This is a contradiction to the orbit $(x(t))_{t\geq 0}$ not passing by B!

1.3.6 Corollary for trapping neighborhoods

Let (X, G) be a real-time, continuous dynamical system on the locally compact Hausdorff space X and $A \subseteq X$ some forward invariant, compact set. Let $U \subseteq X$ be a neighborhood of A such that $A \supseteq \bigcap_{t\geq 0} G_t(U)$. Then there exists a forward invariant, open (compact) neighborhood of attraction Ω of A such that $A \subseteq \Omega \subseteq U^o$.

Proof: Since A is compact and the space locally compact, Hausdorff, there exists a compact neighborhood K of A such that $A \subseteq K \subseteq U^o$. Since $\bigcap_{t\geq 0} G_t(K) \subseteq \bigcap_{t\geq 0} G_t(U) \subseteq A$, by lemma 1.3.4 there exists a forward invariant, open neighborhood Ω of A such that $A \subseteq \Omega \subseteq K^o$. The closure $\overline{\Omega} \subseteq K$ of Ω in X is compact and by

lemma 1.1.8(1) forward invariant. By lemma 1.3.5, $\overline{\Omega}$ (and thus Ω) is a neighborhood of attraction for A.

1.3.7 Theorem: Attractors as stable sets

Let (X, G) be a real-time, continuous dynamical system on the locally compact Hausdorff space X. Then every attractor $A \subseteq X$ is an invariant, Lyapunov table, locally attracting set.

Proof: By definition 1.3.1, every attractor is compact and invariant. Let U be a forward invariant neighborhood of A such that $A = \bigcap_{t\geq 0} G_t(U)$. By corollary 1.3.6, A has a neighborhood of attraction, thus is locally attracting. Left to show is that A is Lyapunov stable. Let B be some neighborhood of A and suppose w.l.o.g. that $B \subseteq U$. Then $\bigcap_{t\geq 0} G_t(B) \subseteq A$ and by corollary 1.3.6 there exists a forward invariant neighborhood Ω of A such that $A \subseteq \Omega \subseteq \overline{B}$.

1.3.8 Lemma on decreasing compact sets

Let X, Y be two topological spaces and X Hausdorff. Let $(B_t)_{t\geq 0}$ be a family of compact subsets of X such that $B_{t_0} \supseteq B_{t_1}$ for every $0 \leq t_0 \leq t_1$. Let $f: X \to Y$ be continuous. Then $f\left(\bigcap_{t\geq 0} B_t\right) = \bigcap_{t\geq 0} f(B_t)$.

Proof: The inclusion $f\left(\bigcap_{t\geq 0} B_t\right) \subseteq \bigcap_{t\geq 0} f(B_t)$ is trivial. Now let $y \in \bigcap_{t\geq 0} f(B_t)$, then $y = f(x_t)$ for some $x_t \in B_t$ for all $t \geq 0$. As $(B_t)_t$ is decreasing, $x_t \in B_\tau$ for every $0 \leq \tau \leq t$. Since B_0 is compact, there exists a subnet $(x_t)_{t\in T}$ of $(x_t)_{t\geq 0}$ that converges towards some $x \in X$. Since $(x_t)_{t\in T}$ is for every $t_0 \geq 0$ eventually within the (closed) B_{t_0} , its limit x is also within B_{t_0} . Thus $x \in \bigcap_{t\geq 0} B_t$. By continuity of f, one has $f(x) = \lim_{T \to t \to \infty} f(x_t) = \lim_{T \to t \to \infty} y = y$.

1.3.9 Theorem: Characterization of attractors

Let (X, G) be a real-time, continuous, space-open dynamical system on the locally compact Hausdorff space X. For any compact set $\emptyset \neq A \subseteq X$ the following are equivalent:

- 1. A is an attractor.
- 2. A is an invariant, Lyapunov stable and locally attracting set.
- 3. There exists a compact, forward invariant neighborhood K of A such that $\bigcap_{t>0} G_t(K) = A$.
- 4. A is invariant and there exists a neighborhood U of A such that $\bigcap_{t\geq 0} G_t(U) \subseteq A$. In that case actually equality "=" holds.

Proof:

 $(1) \Rightarrow (4)$: Follows from the definition of an attractor.

- $(1) \Rightarrow (2)$: See theorem 1.3.7.
- (2) \Rightarrow (1): See theorem 1.3.2.
- (4) \Rightarrow (3): The equality holds since $G_t(A) \supseteq A$ and thus $G_t(U) \supseteq A$ for all $t \ge 0$. By corollary 1.3.6 there exists a compact, forward invariant neighborhood K of A such that $A \subseteq K \subseteq U$ and thus $\bigcap_{t\ge 0} G_t(K) \subseteq A$. Since $G_t(A) \supseteq A$ and thus $G_t(K) \supseteq A$ for all $t \ge 0$, one has actually $\bigcap_{t\ge 0} G_t(K) = A$.
- (3) \Rightarrow (1): For every $t_0 \ge 0$ one has

$$G_{t_0}(A) \subseteq \bigcap_{t \ge 0} \underbrace{G_{t_0}(G_t(K))}_{\subseteq G_t(K)} \subseteq \bigcap_{t \ge 0} G_t(K) = A,$$
(1.7)
by forw. invariance

hence A is forward invariant. On the other hand, each $G_t(K)$ is compact and the sequence $(G_t(K))_{t\geq 0}$ decreasing in t, so that by lemma 1.3.8

$$G_{t_0}(A) \supseteq \bigcap_{t \ge 0} G_{t_0}(G_t(K)) = \bigcap_{t \ge t_0} G_t(K) \supseteq \bigcap_{t \ge 0} G_t(K) = A.$$
(1.8)

Hence, A is invariant. That A is an attractor now follows from the definition.

1.3.10 Theorem: Existence of attractors

Let (X, G) be a real-time, space-continuous dynamical system on the Hausdorff space X. Suppose $K \subseteq X$ is a compact, forward invariant set such that $G_t(K) \subseteq K^o$ for some $t \ge 0$. Then the limit $A := \bigcap_{t \ge 0} G_t(K)$ is an attractor.

Proof: Since every $G_t(K)$ is compact and X is Hausdorff, their intersection A is also compact. Since $(G_t(K))_{t\geq 0}$ is a system of non-empty compacts, decreasing with increasing t, it satisfies the finite intersection property and has thus non-empty intersection $A \neq \emptyset$. By assumption $A \subseteq K^o$, hence K is a neighborhood of A. For every $t_0 \geq 0$ one has

$$G_{t_0}(A) \subseteq \bigcap_{t \ge 0} \underbrace{G_{t_0}(G_t(K))}_{\subseteq G_t(K)} \subseteq \bigcap_{t \ge 0} G_t(K) = A,$$
(1.9)
by forw. invariance

hence A is forward invariant. On the other hand, each $G_t(K)$ is compact and the sequence $(G_t(K))_{t\geq 0}$ decreasing in t, so that by lemma 1.3.8

$$G_{t_0}(A) \supseteq \bigcap_{t \ge 0} G_{t_0}(G_t(K)) = \bigcap_{t \ge t_0} G_t(K) \supseteq \bigcap_{t \ge 0} G_t(K) = A.$$
(1.10)

Hence, A is invariant. Therefore, A satisfies all axioms in 1.3.1 and is an attractor.

1.3.11 Corollary: Existence of attractors

Every real-time, space-continuous dynamical system on a compact Hausdorff space X has a global attractor.

Proof: The space its self is compact, forward invariant and satisfies $G_t(X) \subseteq X = X^o$. Therefore $A := \bigcap_{t \ge 0} G_t(X)$ is an attractor by theorem 1.3.10.

1.3.12 Example: Non-minimal attractors

We shall present an example of a real-time, continuous, space-open invertible dynamical system (X, G) on a compact metric space that has a countably infinite number of attractors, none of which is minimal. We consider the unit-disc $X := \{z \in \mathbb{C} : |z| \le 1\}$ and the concentric discs $A_n := \{z \in \mathbb{C} : |z| \le \frac{1}{n}\}$ for $n \in \mathbb{N}$. We consider the flow corresponding to the differential equation

$$\frac{dz}{dt} = \left\{ \frac{z}{|z|} \cdot \left(|z| - \frac{1}{n} \right) \cdot \left(|z| - \frac{1}{n+1} \right) \cdot n \cdot (n+1) \quad : \frac{1}{n+1} \le |z| \le \frac{1}{n}, n \in \mathbb{N}$$

$$(1.11)$$

having the solution

$$G_t(z_0) := \begin{cases} \frac{z}{z_0} \cdot \frac{\alpha_n(|z_0|) - e^t}{n \cdot \alpha_n(|z_0|) - (n+1) \cdot e^t} & : \frac{1}{n+1} \le |z_0| \le \frac{1}{n}, \ n \in \mathbb{N} \\ 0 & : |z_0| = 0 \end{cases}$$
(1.12)

for $t \in \mathbb{R}$, $z_0 \in X$, whereas

$$\alpha_n(r) := \frac{(n+1) \cdot r - 1}{n \cdot r - 1} \tag{1.13}$$

for $\frac{1}{n+1} \leq r \leq \frac{1}{n}$ and $n \in \mathbb{N}$. Note how the flow is continuous and invertible, thus space-open and space-closed. It corresponds to a radially uniform flow inwards, halting exactly on each of the circles $\partial A_n = \{z \in X : |z| = \frac{1}{n}\}$ and the origin $A_{\infty} := \{0\}$. Each of the discs A_n (and their interior A_n^o , $n \in \mathbb{N}$) is invariant to the flow and all points strictly between two circles ∂A_n , ∂A_{n+1} converge towards (but never arrive at) the inner one A_{n+1}

under the forward action of G. Thus, each A_n $(2 \le n \in \mathbb{N})$ is an attractor with $A_n = \bigcap_{t \ge 0} G_t(A_{n-\frac{1}{2}})$, whereas $A_{n-\frac{1}{2}} := \left\{ z \in \mathbb{C} : |z| \le \frac{1}{n-\frac{1}{2}} \right\}$ is a forward invariant (but not invariant!) neighborhood of A_n . The space $X = A_1$ its self is a global attractor, that is $X = \bigcap_{t \ge 0} G_t(X)$. Notice how none of these attractors is minimal.

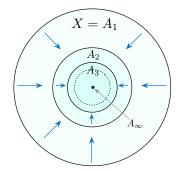


Figure 1.1: On the construction of a dynamical system with infinitely many nested attractors, none of which is minimal. Note that each disc around the origin is forward invariant to the flow, but only the discs A_n $(n \in \mathbb{N} \cup \{\infty\})$, as well as their borders ∂A_n and interiors A_n^o , are invariant.

The origin A_{∞} is a fixed point. It is Lyapunov stable, since each of its neighborhoods contains a sufficiently small invariant disc A_n . It is nonetheless not locally attracting, since every point $z \neq 0$ is for ever captured between two consecutive circles ∂A_n , ∂A_{n+1} .

1.4 Attractors in topologically transitive systems

1.4.1 Lemma: Characterization of topologically transitive systems

Let (X, G) be a real-time dynamical system on the topological space X. Then of the following, (1) and (2) are equivalent and implied by (3). If the system is space-open, all three statements are equivalent.

- 1. The system is topologically transitive.
- 2. Every forward invariant neighborhood is dense in X.
- 3. The interior of every forward invariant neighborhood is dense in X.

Proof:

- (1) \Rightarrow (2): If $U \subseteq X$ is a forward invariant neighborhood, then every other non-empty open set V is intersected by $G_t(U^o)$ for some $t \ge 0$. But $G_t(U^o) \subseteq U$, which shows that U is dense in X.
- (2) \Rightarrow (1): Let $U, V \subseteq X$ be two non-empty open sets. Then $\bigcup_{t\geq 0} G_t(U)$ is forward invariant and a neighborhood, thus dense in X. It therefore intersects V, which implies $G_t(U) \cap V \neq \emptyset$ for some $t \geq 0$.
- $(3) \Rightarrow (2)$: Trivial.
- (1) \Rightarrow (3): Suppose (X, G) to be space-open and topologically transitive. If $U \subseteq X$ is a forward invariant neighborhood, then every other non-empty open set V is intersected by $G_t(U^o)$ for some $t \ge 0$. But $G_t(U^o) \subseteq U^o$ since G_t is an open mapping, which shows that U^o is dense in X.

1.4.2 Theorem: Attractors in topologically transitive systems

Let (X, G) be a real-time, space-open, topologically transitive dynamical system on a locally compact Hausdorff space X. Then the only possible attractor is the space its self, in which case X has to be compact.

Proof: We start by showing the density of any existing attractor A in X. Let U be a forward invariant neighborhood of A such that $A = \bigcap_{t\geq 0} G_t(U)$. By lemma 1.1.8(1), the interior U^o is forward invariant. It satisfies $\bigcap_{t\geq 0} G_t(U^o) \subseteq A$. For every $t\geq 0$, the set $G_t(U^o)$ is open since G_t is an open mapping and forward invariant since U^o is forward invariant. Lemma 1.4.1 therefore implies that $G_t(U^o)$ be dense in A. Thus, $\bigcap_{t\geq 0} G_t(U^o) = \bigcap_{n\in\mathbb{N}} G_n(U^o)$ is a countable intersection of dense, open sets. As the space is locally compact Hausdorff, by Baire this intersection, and thus A, is dense in X.

The density and compactness of A within the Hausdorff space X implies that it is in fact equal to the whole space, the latter thus being compact.

1.4.3 Corollary about topologically transitive attractors

Let (X,G) be a real-time, space-open dynamical system on a Hausdorff space X. Then any topologically transitive attractor is minimal.

Proof: Suppose $A \subseteq X$ to be a topologically transitive attractor containing another attractor $A \subseteq A$. By remark 1.3.1(v) \widetilde{A} is also an attractor for the restricted system $(A, G|_A)$. The latter satisfies the conditions in theorem 1.4.2, by which \widetilde{A} has to be the whole space A.

A Appendix

A.0.4 Lemma: Separating compacts in Hausdorff spaces

Let X be a Hausdorff space and $K_1, K_2 \subseteq X$ disjoint compact sets. Then there exist disjoint open sets $U_1, U_2 \subseteq X$ such that $K_1 \subseteq U_1$ and $K_2 \subseteq U_2$.

Proof: See [4].

A.0.5 Lemma: Necessary condition for locally compact spaces

Let X be a topological space and $A_n \subseteq X$ closed subsets, such that $X = \bigcup_{n=1}^{\infty} A_n$. Let $\emptyset \neq A \subseteq X$ be such that, for every $n \in \mathbb{N}$ one has $A \subseteq \overline{A \setminus A_n}$. Then X can not be locally compact Hausdorff.

Proof: See [6], Appendix 2.45.

References

- [1] Milnor, J., On the concept of attractor: Correction and remarks Communications in Mathematical Physics 102, 517-519 (1985)
- [2] Kelley, J. L., General Topology Springer (1975)
- [3] Milnor, J. W., Attractor Scholarpedia, 1(11):1815 (2006)
- [4] Point and a compact set in a Hausdorff space have disjoint open neighborhoods, PlanetMath http://planetmath.org/?op=getobj&from=objects&id=4193 (23.06.2011)
- [5] Irwin, M.C., Smooth Dynamical Systems World Scientific (2001)
- [6] Douglas, B., Hendtlass, M., Continuous homomorphisms of R onto a compact group Mathematical Logic Quarterly 56, 191-197 (2010)