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Abstract

We introduce cluster sets, periodic orbits and attractors for real-time dynamical systems. We furthermore
show some basic results considering attractors in topologically transitive systems.
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Author notice
This is an article about cluster points and attractors in real-time dynamical systems that resulted rather
spontaneously from personal reflections on the subject in 2011. It is not peer-reviewed! The article assumes
basic knowledge of topology, as provided for example in [2]. Most of the definitions were taken from [3], albeit
with some modifications. A more thorough elaboration on the subjects mentioned can be found in [5].
I would be more than glad about any corrections or suggestions for further improvement You may give me. You
can contact me at stilianos.louca.apple@uni-jena.de, without the fruit.

1 Attractors in real-time dynamical systems
1.1 Preliminaries
1.1.1 Definition: Dynamical system
An abelian semi-group (G,+), to be called time domain, acting on a non-empty set X 6= ∅ is called a semi-
flow on X. We call (X,G) a dynamical system. If G is a group, we call G a flow and (X,G) an invertible
dynamical system. For x ∈ X and g ∈ G, we interpret g(x) as point reached after time g, starting from the
start point x.
If X is a topological space and each g acts on X as an continuous (open, closed) mapping, we call the sys-
tem space-continuous (space-open, space-closed). Note that for invertible systems space-continuity is
equivalent to space-openness and equivalent to space-closeness.
If X is a topological space, G a topological group and the action G×X → X, (g, x) 7→ g(x) is continuous with
respect to the product topology on G × X, then (G,X) shall be called a continuous dynamical system. It
shall be called time-continuous if the action (g, x) 7→ g(x) is continuous in time for every fixed start point x.
Note that continuous systems are space- and time-continuous, with the reverse not always being true.
For any x ∈ X we call the set Gx := (g(x))g∈G the orbit of x under the semi-flow G. A point x ∈ X is called
periodic, if g(x) = x for some time g 6= Id. An orbit Gx is called periodic if it contains a periodic point.
A point x0 ∈ X is called a fixed point of the system if g(x0) = x0 for all g ∈ G. We call a set A ⊆ X invariant
to the semi-flow, if g(A) = A for all g ∈ G. Note that for invertible systems this is equivalent to g(A) ⊆ A for
all g ∈ G.

1.1.2 Definition: Real-time system
We call a dynamical system (X,G) a real-time system if G = [0,∞) or G = R. In that case we write
Gt : X → X for the mapping induced on X by t ∈ R. For any point x ∈ X, we call (Gt(x))t≥0 the future
orbit of x under the semi-flow. It is called completely periodic, if Gt(x) = x for some t > 0.
We call a set A ⊆ X forward invariant to the semi-flow if Gt(A) ⊆ A for all t ≥ 0. Note that for invertible
real-time systems, invariance of a set in (X, (Gt)t≥0) is equivalent to the invariance of the set in (X, (Gt)t∈R).

1.1.3 Definition: Topologically transitive systems
A dynamical system (X,G) on the topological space X is called topologically transitive if for every pair of
non-empty open sets U and V in X, there exists some g ∈ G such that g(U) ∩ V 6= ∅. We call an invariant set
A ⊆ X topologically transitive if the restriction (A,G

∣∣
A

) constitutes a topologically transitive dynamical
system.

Remarks:

(i) If (X,G) is a real-time, invertible dynamical system, then (X, (Gt)t≥0) is topologically transitive if and
only if (X, (Gt)t∈R) is topologically transitive.

(ii) Some authors choose to define topological transitivity as the condition of the existence of a dense orbit in
X. In general topological spaces, neither definition implies the other.
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1.1.4 Definition: Convergence towards sets
Let X be a topological space and A ⊆ X some set. We say that a net1 (Moore-Smith sequence) (xi)i∈I
converges towards A if for every neighborhood B of A the sequence is eventually in B.

Remarks:

(i) Let (X, d) be a metric space and A ⊆ X. If the net (xi)i converges towards A, then d(A, xi)
i−→ 0.

(ii) The inverse statement is true provided that A is a compact set.

1.1.5 Definition: Attracting sets
Let (X,G) be a real-time dynamical system on the topological space X and A ⊆ X some set. A neighborhood
B ⊆ X of A is called a neighborhood of attraction if for all y ∈ B one has Gt(y)

t→∞−→ A. The union of all
orbits eventually converging to A is called its basin of attraction.
A set A ⊆ X is called Lyapunov stable, if for each neighborhood B ⊆ X of A there exists a neighborhood
C ⊆ X of A such that Gt(C) ⊆ B for all t ≥ 0. It is called locally attracting if it has a neighborhood of
attraction and globally attracting if the whole space X is a neighborhood of attraction for A.

Remark: The above notions of stability typically only make sense for forward invariant sets A.

1.1.6 Definition: Forward fixed points
Let (X,G) be a real-time dynamical system. A point x0 ∈ X is called a forward fixed point if Gt(x) = x
for all t ≥ 0. Now let X be a topological space. A forward fixed point x0 is called Lyapunov stable if {x0}
is Lyapunov stable, that is if for any neighborhood U of x0 there exists a neighborhood V of x0, such that
Gt(V ) ⊆ U ∀t ≥ 0. It is called locally attracting if there exists a neighborhood U of x0 such that for all
x ∈ U one has Gt(x)

t→∞−→ x0. It is called globally attracting if for all x ∈ X one has Gt(x)
t→∞−→ x0.

It is called asymptotically stable if it is both Lyapunov stable and locally attracting, otherwise it is called
unstable. It is called globally asymptotically stable if it is Lyapunov stable and globally attracting.

1.1.7 Definition: Future cluster and limit set
Let (X,G) be a real-time dynamical system on the topological space X and x ∈ X. A point y ∈ X is called a
future cluster point of x if for every neighborhood U of y the future orbit (Gt(x))t≥0 is frequently2 in U . It is
called a future limit point (ω-limit point) of x if Gtn(x)

n→∞−→ y for some sequence 0 ≤ t1 < t2 < ..→∞. We
shall write Gcl(x) and Glim(x) for the set of all future cluster points and all future limit points of x respectively,
to be called future cluster set and future limit set of x.

1.1.8 Lemma on closures and interiors of invariant sets
Let (X,G) be a real-time dynamical system on the topological space X and A ⊆ X some set. Then:

1. If the system is space-continuous and A forward invariant, the closure A is forward invariant.
1Sequences indexed over directed sets. We summarize:
• A function f : X → Y between topological spaces X,Y is continuous if an only if for every net (xα)α ⊆ X converging

towards x ∈ X, the net (f(xα))α converges towards f(x).

• A space X is compact if and only if every net (xα)α ⊆ X has a subnet with a limit in X.

• A subset A of a space X is closed if and only if, every limit of a net with elements in A, is again in A.

• A net has a limit if and only if all of its subnets have limits. In that case, every limit of the net is also a limit of every
subnet.

• If X is Hausdorff, then every net in X has at most one limit.

• A net in a product space has a limit if and only if each projection of the net has a limit, equal to the projection of the limit.

• Every sequence is a net. But subnets of sequences are not always subsequences!

• Subnets of subnets of a net are also subnets of that net.

• If a net is frequently in some set A, then it has a subnet which is eventually in A.
See [2] for more on nets and their connection to the topology of a space.

2A net (xα)α∈A is frequently in some set U if for every a ∈ A there exists a b ∈ A with xb ∈ U .
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2. If the system is space-open and A forward invariant, the interior Ao is forward invariant.

3. If the system is space-continuous and space-closed and A invariant, the closure A is invariant.

4. If the system is invertible and space-continuous and A (forward) invariant, then both Ao and A are (forward)
invariant.

5. If the system is invertible and space-continuous and A invariant, then the border ∂A is invariant.

Proof:

1. It suffices to show that A ⊆ G−1t (A) for t ≥ 0, since then Gt(A) ⊆ Gt(G
−1
t (A)) ⊆ A. Indeed, G−1t (A) is by

continuity of Gt a closed set including A.

2. Since Gt(Ao) is for each t ≥ 0 an open set included in A, one has indeed Gt(Ao) ⊆ Ao.

3. In a similar way as in (1), one shows that Gt(A) ⊆ A for all t ≥ 0. Furthermore, Gt(A) is for all t ≥ 0
a closed set containing Gt(A) and thus A, hence also A. If the system is invertible, the invariance of A in
(X, (Gt)t≥0) implies the invariance of the set in (X, (Gt)t∈R).

4. Note that the system is because of invertibility also space-open and space-closed. By the previous points,
it suffices to show that Gt(Ao) is invariant, provided that A is invariant. Since Gt(Ao) is for each t ∈ R an
open set included in A, one has Gt(Ao) ⊆ Ao for all t ∈ R. As the system is invertible, this already implies
the invariance of A.

5. For each t ∈ R, Gt : X → X is bijective and by the previous points one has Gt(Ao) = Ao and Gt(A) = A.
Thus ∂A = A \Ao = Gt(A) \Gt(Ao) = G(A \Ao) = Gt(∂A).

1.1.9 Lemma: Characterization of locally attracting sets
Let (X,G) be a real-time, space-continuous dynamical system on the topological space X and A ⊆ X some set.
Then A is locally attracting if and only if its basin of attraction B is open. In that case one has B =

⋃
t≥0G

−1
t (U)

for any arbitrary neighborhood of attraction U .

Proof: Direction “⇐” is trivial. Now suppose A to be locally attracting and let U be some neighborhood of
attraction for A. Set Ω :=

⋃
t≥0G

−1
t (U) and let B be then basin of attraction of A. Then B ⊆ Ω, since every

orbit starting in B eventually plunges into U . But by construction of Ω, every orbit starting in Ω passes by
U and, since U is a neighborhood of attraction, eventually converges to A. Thus also Ω ⊆ B. Since U can be
chosen to be open, Ω = B is open by continuity of each Gt.

1.1.10 Lemma on stable sets
Let (X,G) be a real-time, space-open dynamical system on the topological space X and A ⊆ X a Lyapunov
stable, locally attracting set. Then for each neighborhood B of A there exists a forward invariant neighborhood
of attraction for A, included in B.

Proof: Let U be some neighborhood of attraction for A. We can suppose that U ⊆ B, otherwise U ∩B would
do the job. Note V the set of all neighborhoods V of A such that Gt(V ) ⊆ U for all t ≥ 0. By the Lyapunov
stability of A, V is not empty. Note that if V ∈ V, then also Gt(V ) ∈ V for all t ≥ 0 by openness of Gt. Thus,
the set Ω :=

⋃
V ∈V V is a forward invariant neighborhood of A. Moreover, since Ω ⊆ U , it is a neighborhood of

attraction.

1.2 Future cluster sets and periodic orbits
1.2.1 Lemma: Characterization of fixed and periodic points
Let (X,G) be a real-time dynamical system on the Hausdorff space X and x ∈ X. Then:

1. x is a forward fixed point if and only if there exists an ε > 0 such that Gt(x) = x for all 0 ≤ t ≤ ε.

2. Suppose the system is time-continuous. Then x is a periodic, non forward fixed point if and only if there
exists a smallest t0 > 0 such that Gt0(x) = x. That time t0 is called the period of x.
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Proof:

1. Follows from the definition and the fact that G acts as a semi-group.

2. Direction “⇐” follows from the relevant definitions. Let x be non forward fixed and periodic. We shall show
that the set

Tx := {t > 0 : Gt(x) = x} 6= ∅ (1.1)

is closed in R, so that t0 := minTx satisfies the mentioned properties3.

Let 0 < t0 /∈ Tx, that is Gt0(x) 6= x. Then as X is Hausdorff, by time-continuity of the system there exists
a neighborhood U ⊆ (0,∞) of t0 such that Gt(x) 6= x for all t ∈ U . This shows that U ∩ Tx = ∅ and
that Tx is closed in (0,∞). Left to show is that, 0 is not a limit point of Tx. Indeed, suppose that there
exists (tn)n ⊆ Tx such that tn

n→∞−→ 0. Then each time t > 0 can be approximated by integer multiples of
adequately small members of (tn)n, that is t is a limit point of Tx and thus within Tx. This would mean that
x is a forward fixed point, a contradiction.

1.2.2 Theorem: Properties of future cluster and limit sets
Let (X,G) be a real-time dynamical system on the topological space X and x ∈ X. Then:

1. Glim(x) ⊆ Gcl(x). The reverse is true provided that X is first-countable.

2. The future cluster set Gcl(x) is closed in X.

3. If the system is space-continuous, then Gcl(x) as well as Glim(x) are forward invariant sets.

4. If the system is space-continuous and invertible, then Gcl(x) as well as Glim(x) are invariant sets.

5. Let X be Hausdorff and K ⊆ X be compact. If the future orbit (Gt(x))t≥0 converges to K, then Gcl(x) is a
compact subset of K.

6. Let the system be time-continuous, X be Hausdorff and K ⊆ X be compact, enclosed by a compact neigh-
borhood. If the future orbit (Gt(x))t≥0 converges to K, then Gcl(x) is a non-empty, connected, compact
subset of K.

7. Let the system be time-continuous, X be Hausdorff and K ⊆ X be compact, enclosed by a compact neigh-
borhood. If the future cluster set Gcl(x) is non-empty and completely within K, then the future orbit of x
converges to K.

Proof:

1. Trivial.

2. Let y /∈ Gcl(x), then there exists an open neighborhood U of y such that (Gt(x))t≥0 is eventually in U c. As
U is a neighborhood for all of its points, x ∈ U ⊆ X \Gcl(x), proving that Gcl(x) is closed.

3. Let y ∈ Gcl(x) and τ ≥ 0, we show that Gτ (y) ∈ Gcl(x). For any neighborhood U of Gτ (y) we can by
continuity of Gτ choose a neighborhood V of y such that Gτ (V ) ⊆ U . Then for any t ≥ 0 there exists an
s ≥ t such that Gs(x) ∈ V , hence Gs+τ (x) ∈ U , which was to be shown.

Now let y ∈ Glim(x), that is y = lim
n→∞

Gtn(x) for some 0 ≤ t1 < t2 < ..→∞. Then for any τ ≥ 0 one has by
continuity Gτ (y) = lim

n→∞
Gτ (Gtn(x)) = lim

n→∞
Gtn+τ (x), which shows that Gτ (y) ∈ Glim(x).

4. Similar to (3), using the characterization of invariance mentioned in 1.1.1.

5. Let y ∈ Gcl(x) be some future cluster point of x. Then every neighborhood U of y intersects every neigh-
borhood V of K. Since both {y} and K are compacts, by lemma A.0.4 y ∈ K, that is Gcl(x) ⊆ K. Since by
(2) Gcl(x) is closed, it is compact.
3It is easy to see that the period t0 is a generator of the additive semi-group Tx ∪ {0}.
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6. Suppose K̃ ⊆ X to be some compact neighborhood of K and Gcl(x) not to be connected. Then Gcl(x)
would consist of two disjoint, non-empty compact parts K1,K2 ⊆ K. By lemma A.0.4 there would exist
two disjoint, open (in X) sets U1, U2, each enclosing one of the two parts. We may of course assume that
U1, U2 ⊆ K̃. As (Gt(x))t≥0 converges to K, it would eventually have to be within K̃. As x has cluster points
in K1 as well as K2, it passes from U1 to U2 and vice versa an infinite number of times. As U1, U2 are disjoint
open sets and the orbit G(x) : [0,∞) → R continuous, it would have to exit the set U1 ∪ U2 and pass by
R := K̃ \ (U1 ∪ U2) an infinite number of times. As R is a compact set, the orbit would have at least one
cluster point in R, a contradiction to Gcl(x) being enclosed by U1 ∪ U2.

Clearly Gcl(x) is non-empty since the orbit is eventually within the compact K̃. The rest is given by point
(5).

7. Let K̃ ⊆ X be some compact neighborhood of K and U some arbitrary neighborhood of K. We show that
Γx := (Gt(x))t≥0 is eventually within U . We can w.l.o.g. assume U ⊆ K̃ and U to be open. Now suppose
Γx to be frequently in U c. As Γx has a cluster point in K, it is also frequently in U . By time-continuity, it
thus passes frequently by ∂U . As ∂U ⊆ K is compact, Γx possesses in ∂U a cluster point. As ∂U ∩ U = ∅,
that cluster point is not within K, a contradiction!

1.2.3 Corollary for compact systems
Let (X,G) be a real-time, time- and space-continuous dynamical system on the compact Hausdorff space X.
Then for every x ∈ X, the future cluster set Gcl(x) is a non-empty, connected, compact, forward invariant set.

Proof: Trivially, the orbit (Gt(x))t≥0 converges to the compact X. By theorem 1.2.2 follows the affirmation.

Note: The future cluster set Gcl need not be an orbit its self4. However, if Gcl(x) is a completely periodic
future orbit of the system and disjoint from the orbit (Gt(x))t≥0, it is called a future limit cycle (ω-limit
cycle) (of x).

1.2.4 Theorem: Characterization of periodic orbits
Let (X,G) be a real-time, time-continuous, space-continuous dynamical system on the Hausdorff space X. Then
a future orbit Γ := (Gt(x))t≥0 is compact if and only if it is periodic. In that case, there exists a smallest time
t0 ≥ 0 such that Gt0(x) is periodic. Furthermore, Gcl(x) is the future orbit of Gt0(x) and consists of all periodic
points of Γ. If furthermore the system is invertible, then Γ is completely periodic.

Proof: The proof is inspired by [5]. See [6] for a generalization. Direction “⇐” is trivial. Suppose now
Γ := (Gt(x))t≥0 to be compact, so that one has ∅ 6= Gcl(x) ⊆ Γ. Suppose Γ to be non-periodic. The
mapping R+ := [0,∞) → X, t 7→ Gt(x) is then injective. By time-continuity of the system, every segment
Γn := (Gt(x))t≤n is a compact and thus closed subset of Γ. As Γ contains Gcl(x) 6= ∅, there exists a point
y ∈ Γ such that each neighborhood of y is visited by the future orbit at arbitrarily late times, that is intersects
(Gt(x))t>n = Γ \ Γn for all n ∈ N. Thus y ∈ Γ \ Γn for all n ∈ N. As Γ =

⋃∞
n=1 Γn, by lemma A.0.5 Γ can not

be locally compact Hausdorff, a contradiction! Thus Γ is indeed periodic.
Now let

Tcl := {t ≥ 0 : Gt(x) ∈ Gcl(x)} . (1.2)

We have already seen that Tcl 6= ∅. We show that Tcl is closed in R+ := [0,∞), by showing that its complement
T ccl := R+ \ Tcl is open in R+. Let 0 ≤ t0 /∈ Tcl, that is Gt0(x) /∈ Gcl(x). By lemma 1.2.2(2), Gcl(x) is closed
in X, so that there exist an open neighborhood U ⊆ X of Gt0(x) not intersecting Gcl(x). As the system is
time-continuous, there exists an open neighborhood Ũ ⊆ R+ of t0 such that Gt(x) ∈ U for all t ∈ Ũ , that is
Ũ ⊆ T ccl.
Thus the minimum t0 := minTcl exists. We note Γ0 := (Gt(x))t≥t0 the future orbit of Gt0(x). By lemma
1.2.2(3) and space-continuity of the system, future cluster sets are forward invariant, so that Γ0 ⊆ Gcl(x). By
choice of t0, one has actually Gcl(x) = Γ0. Indeed, if Gt1(x) ∈ Gcl(x) \ Γ0 for some t1 ≥ 0, this would imply
t1 < t0, a contradiction to the minimality of t0.

4It could for example consist of the whole space, if the future orbit (Gt(x))t≥0 was dense in X.
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We now show that, the periodic points of Γ are exactly its cluster points. Indeed, each periodic point is obviously
a cluster point. Inversely, let x1 := Gt1(x) be a cluster point of Γ for some time t1 ≥ 0. As Γ is periodic, the
future orbit Γ1 := (Gt(x))t≥t1+1 is actually given by (Gt(x))t1+1≤t≤T for some T ≥ 0 adequately large. By
time-continuity of the system, Γ1 is therefore compact. As Gcl(x) = Gcl(Gt1+1(x)) ⊆ Γ1, x1 is in Γ1, that is,
re-attained at some later time t > t1 and thus periodic.
Now suppose the system to be invertible and t0 ≥ 0 such that x0 := Gt0(x) is a periodic point, with GT (x0) = x0
for some T > 0. Then x = G−t0(x0) = G−t0(Gt0+T (x)) = GT (x), showing that x is periodic its self.

1.2.5 Theorem: Characterization of limit cycles
Let (X,G) be a real-time, time-continuous, space-continuous dynamical system on the locally compact Hausdorff
space X. Let Γx := (Gt(x))t≥0 be a completely periodic future orbit. Let Γy := (Gt(y))t≥0 be some future
orbit and Gcl(y) the future cluster set of y. Then the following are equivalent:

1. Γy converges towards the set Γx.

2. Gcl(y) = Γx.

3. ∅ 6= Gcl(y) ⊆ Γx.

If Γx ∩ Γy = ∅, then Γx is a future limit cycle of y if and only if any of the above holds.

Proof: Note that as the system is time-continuous and Γx periodic, Γx is compact as a set.

(1)⇒(2): As X is locally compact and Hausdorff, there exists a compact neighborhood of Γx. Thus by 1.2.2(6),
Gcl(y) is a non-empty, compact subset of Γx. We show that actually Γx ⊆ Gcl(y). Fix some future cluster
point x0 ∈ Γx of Γy. For any t0 ≥ 0 and any neighborhood V of Gt0(x0), let U ⊆ X be a neighborhood
of x0 such that Gt0(U) ⊆ V . Then, as Γy is frequently in U , it is also frequently in V , so that Gt0(x0) is
also a future cluster point of y. This shows that Γx = Gcl(y).

(2)⇒(3): Trivial.

(3)⇒(1): As X is locally compact and Hausdorff, Γx is enclosed by a compact neighborhood. Thus, lemma
1.2.2(7) applies.

The last affirmation follows from the definition of a future limit cycle.

1.3 Attractors
1.3.1 Definition: Attractor
Let (X,G) be a real-time dynamical system on the topological space X. A compact, invariant set ∅ 6= A ⊆ X is
called an attractor if there exists a forward invariant neighborhood U ⊆ X of A, such that A =

⋂
t≥0Gt(U).

The attractor is called global, if A =
⋂
t≥0Gt(X). It is called minimal if it does not strictly contain any other

attractors.

Remarks:

(i) A is locally maximal in the following sense: Every invariant set B ⊆ U , that is satisfying Gt(B) = B ∀t ≥ 0,
is included in A.

(ii) In particular if (X,G) is invertible: Every orbit completely included in U lies in fact completely within A.

(iii) If (X,G) is invertible, the invariance of A follows from the rest of the definition.

(iv) For any other set V between A and U , that is A ⊆ V ⊆ U , one has A =
⋂
t≥0Gt(V ) as well.

(v) If A is an attractor in (X,G) and B ⊆ X some forward invariant set containing A, then A is also an
attractor for the smaller system (B, (Gt

∣∣
B

)t≥0).

(vi) A global attractor is unique and includes all other attractors of the system.
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1.3.2 Theorem: Stable sets as attractors
Let (X,G) be a real-time, space-open and space-continuous dynamical system on the locally compact Hausdorff
space X. Then every compact, invariant, Lyapunov stable and locally attracting set A ⊆ X is an attractor. As
a special case, every asymptotically stable, forward fixed point is an attractor.

Proof: Let V be an open neighborhood of attraction for A. Since A is compact and X locally compact
Hausdorff, there exists a compact neighborhood K of A, included in U . By lemma 1.1.10, there exists a forward
invariant neighborhood U of attraction for A, included in K. We show that A =

⋂
t≥0Gt(U). Obviously

A ⊆
⋂
t≥0Gt(U) since A is invariant, so that it suffices to show

⋂
t≥0Gt(U) ⊆ A. Since the space is Hausdorff,

it suffices to show that for any open neighborhood B of A one has
⋂
t≥0Gt(U) ⊆ B. By lemma 1.1.10, it suffices

to consider forward invariant B-s. For such a B and m ∈ N let

VB,m := {x ∈ V : Gm(x) ∈ B} = G−1m (B) ∩ V. (1.3)

By positive invariance of B one has VB,m ⊆ VB,m+1. By continuity of Gm each VB,m is open. Furthermore,
by choice of V one has V ⊆

⋃
m∈N VB,m. Since K is compact and included in V , there exists an MB such

that K ⊆
⋃MB

m=1 VB,m = VB,MB
. Since U is included in K, also U ⊆ VB,MB

, that is GMB
(U) ⊆ B. Thus⋂

t≥0Gt(U) ⊆ GMB
(U) ⊆ B.

1.3.3 Lemma on continuous functions
Let T,X, Y be topological spaces and G : T × X → Y, (t, x) 7→ Gt(x) continuous. Let U ⊆ Y be open and
I ⊆ T be compact. Then the set

Ω :=
⋂
t∈I

G−1t (U) (1.4)

is open in Y .

Proof: This proof uses the characterization of continuity and compactness via nets. Let x ∈ Ω and note V the
system of neighborhoods of x, considered as a directed set with respect to the inclusion. Now suppose that for
every neighborhood V ∈ V of x, one has V * Ω, that is, there exist (tV , xV ) ∈ I × V such that GtV (xV ) /∈ U .
Note that the net (xV )V ∈V converges towards x. As I is compact, there exists a subnet (tṼ )Ṽ of (tV )V ∈V that
converges towards some t ∈ I. Since the subnet (xṼ )Ṽ still converges towards x, the subnet (tṼ , xṼ )Ṽ converges
towards (t, x). By continuity of G, this implies that (GtṼ (xṼ ))Ṽ converges towards Gt(x) ∈ U . But this is a
contradiction, since GtṼ (xṼ ) ∈ U c and U c is closed. Thus, x ∈ V ⊆ Ω for some neighborhood V of x.

1.3.4 Lemma on trapping neighborhoods
Let (X,G) be a real-time, continuous dynamical system on the Hausdorff space X and A ⊆ X some forward
invariant set. Let K ⊆ X be a compact neighborhood of A such that A ⊇

⋂
t≥0Gt(K). Then there exists a

forward invariant, open neighborhood Ω of A such that A ⊆ Ω ⊆ Ko.

Proof: The following proof is a generalization of the proof found in [1] for the discrete case to the real-time
case. For t0 ≥ 0 define

Ωt0 :=
⋂

0≤t≤t0
G−1t (Ko). (1.5)

as the set of start-points in Ko staying within Ko up to time t0. By lemma 1.3.3, each Ωt0 is open. As A ⊆ Ko

is forward invariant, A ⊆ Ωt0 . Moreover, Gτ (Ωt0) ⊆ Ωt0−τ for every 0 ≤ τ ≤ t0 and Ωt0 ⊇ Ωt1 for every
0 ≤ t0 ≤ t1. We define

Ω :=
⋂
t0≥0

Ωt0 (1.6)

as the set of start-points in Ko always staying within Ko. Note that A ⊆ Ω ⊆ Ko. Furthermore, Ω is forward
invariant, since Gτ (Ω) ⊆

⋂
t0≥τ Ωt0−τ = Ω for every τ ≥ 0.

Claim: Either Ωt0 ) Ωt1 for all 0 ≤ t0 < t1 or Ω = Ωt0 for some t0 ≥ 0.
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Proof: Suppose the first variant to be false, that is Ωt0 = Ωt1 for some 0 ≤ t0 < t1. Call
ε := (t1− t0). We shall show that Ωt0 = Ωt0+n·ε for all n ∈ N, which would prove the claim. Indeed,
suppose x ∈ Ωt0 , then (Gt(x))t1t=0 ⊆ Ko and thus (Gt(Gε(x)))t0t=0 ⊆ Ko which implies Gε(x) ∈ Ωt0 .
This again means that Gε(x) ∈ Ωt1 , that is (Gt(x))t1+εt=ε ⊆ Ko and therefore (Gt(x))t0+2ε

t=0 ⊆ Ko,
thus x ∈ Ωt0+2ε. The rest follows by induction.

Claim: Ω = Ωt0 .

Proof: Suppose the contrary, then Ωt0 ) Ωt1 for all 0 ≤ t0 < t1. We shall show that Gt(A) * A for
some t ≥ 0, a contradiction!
Choose xn ∈ Ωn \ Ωn+1 and set yn := Gn(xn) for every n ∈ N. Consider (yn)n as a net. Then
by compactness of K, there exists a subnet (not necessarily subsequence!) (yn(k))k∈I of (yn)n that
converges towards some y ∈ K. Now each yn belongs to the intersection

⋂
0≤t≤nGn(K), since

y = Gn(xn) = Gt(Gn−t(xn)) ∈ Gt(K) for each 0 ≤ t ≤ n. Otherwise said, for each t ≥ 0
the sequence (yn)n is eventually in Gt(K), a property shared by the subnet (yn(k))k∈I . Since Gt
is continuous and X Hausdorff, each Gt(K) is compact and therefore closed. Thus, the limit y
lies within each of the Gt(K). As

⋂
t≥0Gt(K) ⊆ A, we find that y ∈ A. On the other hand

xn /∈ Ωn+1, implying that Gεn(yn) /∈ Ko for some 0 ≤ εn ≤ 1 for every n ∈ N. As [0, 1] is
compact, we can suppose (εn(k))k∈I to be converging towards some t ∈ [0, 1]. Thus the subnet
(tn(k), yn(k))k∈I converges towards (t, y). Since G : R+ × X → X is continuous, we find that
Gt(y) = lim

k∈I
Gtn(k)

(yn(k)) /∈ Ko, since (Ko)c is closed. This implies Gt(y) /∈ A, since A ⊆ Ko.

Together with y ∈ A, this is a contradiction!

Thus Ω = Ωt0 for some t0 ≥ 0, that is Ωt0 is indeed an open neighborhood of A.

Remark: The proof actually shows that such a forward invariant neighborhood Ω is given by the set of all
start-points in Ko whose future orbits stay within Ko. This so constructed Ω is the greatest forward invariant
neighborhood of A included within Ko. The proof also reveals that there exists some t0 ≥ 0, such that Ω is
characterized as being the set of all start-points in Ko whose orbits stay within Ko up to time t0.

1.3.5 Lemma: Neighborhoods of attraction in trapping neighborhoods
Let (X,G) be a real-time, continuous dynamical system on the Hausdorff space X and A ⊆ X some forward
invariant, compact set. Let K ⊆ X be a compact neighborhood of A such that

⋂
t≥0Gt(K) ⊆ A. Then every

forward invariant neighborhood Ω of A included in K is a neighborhood of attraction for A.

Proof: Let B be some neighborhood of A and x0 ∈ Ω. We show that the future orbit (x(t))t≥0 := (Gt(x0))t≥0
is eventually in B. We can assume that B ⊆ K. Now since B is included in a compact and A ⊆ Bo is compact
and X Hausdorff, there exists a compact neighborhood K̃ of A included in B. It satisfies

⋂
t≥0Gt(K̃) ⊆⋂

t≥0Gt(K) ⊆ A and contains therefore by lemma 1.3.4 a forward invariant neighborhood B̃ of A. To sum it
up, we can suppose B to be already forward invariant.
It thus suffices to show that (x(t))t≥0 passes by B. Suppose the contrary, that is x(t) /∈ B for all t ≥ 0. Since
K is compact, the orbit (x(t))t≥0 has a cluster point x in K.
Since Ω is forward invariant, the sets Gt(Ω) are decreasing with increasing t. Thus x(t) ∈ Gt0(Ω) for all
0 ≤ t0 ≤ t, that is, for every t0 ≥ 0 the orbit (x(t))t≥0 is eventually in Gt0(Ω). Since Ω is compact, being
closed within the compact set K, each Gt0(Ω) is compact and thus closed. Thus the cluster point x is within
each Gt0(Ω) and consequently in the intersection

⋂
t≥0Gt(Ω) ⊆

⋂
t≥0Gt(K) ⊆ A. This is a contradiction to

the orbit (x(t))t≥0 not passing by B!

1.3.6 Corollary for trapping neighborhoods
Let (X,G) be a real-time, continuous dynamical system on the locally compact Hausdorff space X and A ⊆ X
some forward invariant, compact set. Let U ⊆ X be a neighborhood of A such that A ⊇

⋂
t≥0Gt(U). Then

there exists a forward invariant, open (compact) neighborhood of attraction Ω of A such that A ⊆ Ω ⊆ Uo.

Proof: Since A is compact and the space locally compact, Hausdorff, there exists a compact neighborhood
K of A such that A ⊆ K ⊆ Uo. Since

⋂
t≥0Gt(K) ⊆

⋂
t≥0Gt(U) ⊆ A, by lemma 1.3.4 there exists a forward

invariant, open neighborhood Ω of A such that A ⊆ Ω ⊆ Ko. The closure Ω ⊆ K of Ω in X is compact and by
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lemma 1.1.8(1) forward invariant. By lemma 1.3.5, Ω (and thus Ω) is a neighborhood of attraction for A.

1.3.7 Theorem: Attractors as stable sets
Let (X,G) be a real-time, continuous dynamical system on the locally compact Hausdorff space X. Then every
attractor A ⊆ X is an invariant, Lyapunov table, locally attracting set.

Proof: By definition 1.3.1, every attractor is compact and invariant. Let U be a forward invariant neighbor-
hood of A such that A =

⋂
t≥0Gt(U). By corollary 1.3.6, A has a neighborhood of attraction, thus is locally

attracting. Left to show is that A is Lyapunov stable. Let B be some neighborhood of A and suppose w.l.o.g.
that B ⊆ U . Then

⋂
t≥0Gt(B) ⊆ A and by corollary 1.3.6 there exists a forward invariant neighborhood Ω of

A such that A ⊆ Ω ⊆ B.

1.3.8 Lemma on decreasing compact sets
Let X,Y be two topological spaces and X Hausdorff. Let (Bt)t≥0 be a family of compact subsets of X such
that Bt0 ⊇ Bt1 for every 0 ≤ t0 ≤ t1. Let f : X → Y be continuous. Then f

(⋂
t≥0Bt

)
=
⋂
t≥0 f(Bt).

Proof: The inclusion f
(⋂

t≥0Bt
)
⊆
⋂
t≥0 f(Bt) is trivial. Now let y ∈

⋂
t≥0 f(Bt), then y = f(xt) for

some xt ∈ Bt for all t ≥ 0. As (Bt)t is decreasing, xt ∈ Bτ for every 0 ≤ τ ≤ t. Since B0 is compact,
there exists a subnet (xt)t∈T of (xt)t≥0 that converges towards some x ∈ X. Since (xt)t∈T is for every t0 ≥ 0
eventually within the (closed) Bt0 , its limit x is also within Bt0 . Thus x ∈

⋂
t≥0Bt. By continuity of f , one

has f(x) = limT3t→∞ f(xt) = limT3t→∞ y = y.

1.3.9 Theorem: Characterization of attractors
Let (X,G) be a real-time, continuous, space-open dynamical system on the locally compact Hausdorff space X.
For any compact set ∅ 6= A ⊆ X the following are equivalent:

1. A is an attractor.

2. A is an invariant, Lyapunov stable and locally attracting set.

3. There exists a compact, forward invariant neighborhood K of A such that
⋂
t≥0Gt(K) = A.

4. A is invariant and there exists a neighborhood U of A such that
⋂
t≥0Gt(U) ⊆ A. In that case actually

equality “=” holds.

Proof:

(1)⇒(4): Follows from the definition of an attractor.

(1)⇒(2): See theorem 1.3.7.

(2)⇒(1): See theorem 1.3.2.

(4)⇒(3): The equality holds since Gt(A) ⊇ A and thus Gt(U) ⊇ A for all t ≥ 0. By corollary 1.3.6 there exists
a compact, forward invariant neighborhood K of A such that A ⊆ K ⊆ U and thus

⋂
t≥0Gt(K) ⊆ A.

Since Gt(A) ⊇ A and thus Gt(K) ⊇ A for all t ≥ 0, one has actually
⋂
t≥0Gt(K) = A.

(3)⇒(1): For every t0 ≥ 0 one has

Gt0(A) ⊆
⋂
t≥0

Gt0(Gt(K))︸ ︷︷ ︸
⊆Gt(K)

by forw. invariance

⊆
⋂
t≥0

Gt(K) = A,
(1.7)

hence A is forward invariant. On the other hand, each Gt(K) is compact and the sequence (Gt(K))t≥0
decreasing in t, so that by lemma 1.3.8

Gt0(A) ⊇
⋂
t≥0

Gt0(Gt(K)) =
⋂
t≥t0

Gt(K) ⊇
⋂
t≥0

Gt(K) = A. (1.8)
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Hence, A is invariant. That A is an attractor now follows from the definition.

1.3.10 Theorem: Existence of attractors
Let (X,G) be a real-time, space-continuous dynamical system on the Hausdorff space X. Suppose K ⊆ X is a
compact, forward invariant set such that Gt(K) ⊆ Ko for some t ≥ 0. Then the limit A :=

⋂
t≥0Gt(K) is an

attractor.

Proof: Since every Gt(K) is compact and X is Hausdorff, their intersection A is also compact. Since
(Gt(K))t≥0 is a system of non-empty compacts, decreasing with increasing t, it satisfies the finite intersec-
tion property and has thus non-empty intersection A 6= ∅. By assumption A ⊆ Ko, hence K is a neighborhood
of A. For every t0 ≥ 0 one has

Gt0(A) ⊆
⋂
t≥0

Gt0(Gt(K))︸ ︷︷ ︸
⊆Gt(K)

by forw. invariance

⊆
⋂
t≥0

Gt(K) = A,
(1.9)

hence A is forward invariant. On the other hand, eachGt(K) is compact and the sequence (Gt(K))t≥0 decreasing
in t, so that by lemma 1.3.8

Gt0(A) ⊇
⋂
t≥0

Gt0(Gt(K)) =
⋂
t≥t0

Gt(K) ⊇
⋂
t≥0

Gt(K) = A. (1.10)

Hence, A is invariant. Therefore, A satisfies all axioms in 1.3.1 and is an attractor.

1.3.11 Corollary: Existence of attractors
Every real-time, space-continuous dynamical system on a compact Hausdorff space X has a global attractor.

Proof: The space its self is compact, forward invariant and satisfies Gt(X) ⊆ X = Xo. Therefore A :=⋂
t≥0Gt(X) is an attractor by theorem 1.3.10.

1.3.12 Example: Non-minimal attractors
We shall present an example of a real-time, continuous, space-open invertible dynamical system (X,G) on a
compact metric space that has a countably infinite number of attractors, none of which is minimal. We consider
the unit-disc X := {z ∈ C : |z| ≤ 1} and the concentric discs An :=

{
z ∈ C : |z| ≤ 1

n

}
for n ∈ N. We consider

the flow corresponding to the differential equation

dz

dt
=
{
z
|z| ·

(
|z| − 1

n

)
·
(
|z| − 1

n+1

)
· n · (n+ 1) : 1

n+1 ≤ |z| ≤
1
n , n ∈ N (1.11)

having the solution

Gt(z0) :=


z
z0
· αn(|z0|)−et
n·αn(|z0|)−(n+1)·et : 1

n+1 ≤ |z0| ≤
1
n , n ∈ N

0 : |z0| = 0

(1.12)

for t ∈ R, z0 ∈ X, whereas

αn(r) :=
(n+ 1) · r − 1

n · r − 1
(1.13)

for 1
n+1 ≤ r ≤

1
n and n ∈ N. Note how the flow is continuous and invertible, thus space-open and space-closed.

It corresponds to a radially uniform flow inwards, halting exactly on each of the circles ∂An =
{
z ∈ X : |z| = 1

n

}
and the origin A∞ := {0}. Each of the discs An (and their interior Aon, n ∈ N) is invariant to the flow and
all points strictly between two circles ∂An, ∂An+1 converge towards (but never arrive at) the inner one An+1

12



under the forward action of G. Thus, each An (2 ≤ n ∈ N) is an attractor with An =
⋂
t≥0Gt(An− 1

2
), whereas

An− 1
2

:=
{
z ∈ C : |z| ≤ 1

n− 1
2

}
is a forward invariant (but not invariant!) neighborhood of An. The space

X = A1 its self is a global attractor, that is X =
⋂
t≥0Gt(X). Notice how none of these attractors is minimal.

A2

A3

X = A1

A∞

Figure 1.1: On the construction of a dynamical system
with infinitely many nested attractors, none of which is min-
imal. Note that each disc around the origin is forward in-
variant to the flow, but only the discs An (n ∈ N∪ {∞}), as
well as their borders ∂An and interiors Aon, are invariant.

The origin A∞ is a fixed point. It is Lyapunov stable, since each of its neighborhoods contains a sufficiently
small invariant disc An. It is nonetheless not locally attracting, since every point z 6= 0 is for ever captured
between two consecutive circles ∂An, ∂An+1.

1.4 Attractors in topologically transitive systems
1.4.1 Lemma: Characterization of topologically transitive systems
Let (X,G) be a real-time dynamical system on the topological space X. Then of the following, (1) and (2) are
equivalent and implied by (3). If the system is space-open, all three statements are equivalent.

1. The system is topologically transitive.

2. Every forward invariant neighborhood is dense in X.

3. The interior of every forward invariant neighborhood is dense in X.

Proof:

(1)⇒(2): If U ⊆ X is a forward invariant neighborhood, then every other non-empty open set V is intersected
by Gt(Uo) for some t ≥ 0. But Gt(Uo) ⊆ U , which shows that U is dense in X.

(2)⇒(1): Let U, V ⊆ X be two non-empty open sets. Then
⋃
t≥0Gt(U) is forward invariant and a neighbor-

hood, thus dense in X. It therefore intersects V , which implies Gt(U) ∩ V 6= ∅ for some t ≥ 0.

(3)⇒(2): Trivial.

(1)⇒(3): Suppose (X,G) to be space-open and topologically transitive. If U ⊆ X is a forward invariant
neighborhood, then every other non-empty open set V is intersected by Gt(U

o) for some t ≥ 0. But
Gt(U

o) ⊆ Uo since Gt is an open mapping, which shows that Uo is dense in X.

1.4.2 Theorem: Attractors in topologically transitive systems
Let (X,G) be a real-time, space-open, topologically transitive dynamical system on a locally compact Hausdorff
space X. Then the only possible attractor is the space its self, in which case X has to be compact.
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Proof: We start by showing the density of any existing attractor A in X. Let U be a forward invariant
neighborhood of A such that A =

⋂
t≥0Gt(U). By lemma 1.1.8(1), the interior Uo is forward invariant. It

satisfies
⋂
t≥0Gt(U

o) ⊆ A. For every t ≥ 0, the set Gt(Uo) is open since Gt is an open mapping and forward
invariant since Uo is forward invariant. Lemma 1.4.1 therefore implies that Gt(Uo) be dense in A. Thus,⋂
t≥0Gt(U

o) =
⋂
n∈NGn(Uo) is a countable intersection of dense, open sets. As the space is locally compact

Hausdorff, by Baire this intersection, and thus A, is dense in X.
The density and compactness of A within the Hausdorff space X implies that it is in fact equal to the whole
space, the latter thus being compact.

1.4.3 Corollary about topologically transitive attractors
Let (X,G) be a real-time, space-open dynamical system on a Hausdorff space X. Then any topologically
transitive attractor is minimal.

Proof: Suppose A ⊆ X to be a topologically transitive attractor containing another attractor Ã ⊆ A. By
remark 1.3.1(v) Ã is also an attractor for the restricted system (A,G

∣∣
A

). The latter satisfies the conditions in
theorem 1.4.2, by which Ã has to be the whole space A.

A Appendix
A.0.4 Lemma: Separating compacts in Hausdorff spaces
Let X be a Hausdorff space and K1,K2 ⊆ X disjoint compact sets. Then there exist disjoint open sets
U1, U2 ⊆ X such that K1 ⊆ U1 and K2 ⊆ U2.

Proof: See [4].

A.0.5 Lemma: Necessary condition for locally compact spaces
Let X be a topological space and An ⊆ X closed subsets, such that X =

⋃∞
n=1An. Let ∅ 6= A ⊆ X be such

that, for every n ∈ N one has A ⊆ A \An. Then X can not be locally compact Hausdorff.

Proof: See [6], Appendix 2.45.
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