Abgabetermin: Donnerstag, 05.02.09

(27) Foldy-Wouthuysen-Transformation im feldfreien Fall

5 P.

Im feldfreien Fall, $A_{\mu} = 0$, kann die Transformation $\psi' = e^{S} \psi$, welche den Hamilton-Operator $H = c \alpha \cdot p + \beta mc^{2}$ auf blockdiagonale Form bringt, exakt angegeben werden:

$$S = \beta \, \frac{\boldsymbol{\alpha} \cdot \boldsymbol{p}}{2p} \, \arctan\left(\frac{p}{mc}\right)$$

(wobei wir nur Impulseigenzustände mit Eigenwert p betrachten). Bestimmen Sie $H' = e^S H e^{-S}$. Zeigen Sie dazu, daß [S, H] = 2SH sowie $e^{2S} = E_p^{-1}\beta H$.

Hinweis:
$$\arctan x = \arccos \frac{1}{\sqrt{1+x^2}} = \arcsin \frac{x}{\sqrt{1+x^2}}$$
.

(28) CP-Verletzung im Standardmodell

6 P.

Im Standardmodell der Teilchenphysik koppeln die Quarks an die geladenen W^{\pm}_{μ} -Vektorbosonen durch den Strom

$$J^{\mu}(x) = \frac{1}{2} \overline{\psi}^{i}(x) \gamma^{\mu} (1 - \gamma_5) \chi^{j}(x) V_{ij} ,$$

wobei die Spinoren ψ^i und χ^i mit i, j = 1, 2, 3 die drei up- bzw. down-artigen Quarks beschreiben und V_{ij} die sogenannte Cabibbo-Kobayashi-Maskawa-Matrix ist:

$$\mathcal{L}_{cc} = \frac{g}{\sqrt{2}} \left(W_{\mu}^{+} J^{\mu} + W_{\mu}^{-} J^{\mu\dagger} \right) .$$

Diese Kopplung ist für die phänomenologisch wichtige CP-Verletzung im Standardmodell verantwortlich:

Eine kombinierte Ladungskonjugation und Paritätstransformation wirkt auf einen Spinor durch

$$CP: \psi(x) \xrightarrow{P} \gamma^0 \psi(\bar{x}) \xrightarrow{C} \gamma^0 C \overline{\psi}^t(\bar{x})$$

mit $\bar{x}^{\mu} = P^{\mu}_{\nu} x^{\nu}$ und $(P^{\mu}_{\nu}) = \text{diag}(1, -1, -1, -1)$. C ist die Ladungskonjugationsmatrix mit den Eigenschaften $C^{\dagger} = C^{-1}$, $C^{-1} \gamma_{\mu} C = -\gamma^{t}_{\mu}$ und $C^{-1} \gamma_{5} C = \gamma^{t}_{5}$. Beachten Sie auch, daß gilt $(\gamma^{\mu})^{\dagger} = \gamma^{0} \gamma^{\mu} \gamma^{0} = P^{\mu}_{\nu} \gamma^{\nu}$.

- a) Zeigen Sie für den Dirac-konjugierten Spinor, daß $CP: \overline{\psi}(x) \to -\psi^t(\bar{x})C^{-1}\gamma^0$.
- b) Zeigen Sie, daß obiger Strom unter CP übergeht in

$$J^{\mu}(x) \to P^{\mu}_{\ \nu} \frac{1}{2} \, \overline{\chi}^{j}(\bar{x}) \gamma^{\nu} (1 - \gamma_{5}) \psi^{i}(\bar{x}) V_{ij} \ .$$

- c) Bestimmen Sie $J^{\mu\dagger}(x)$.
- d) Zeigen Sie, daß mit der Transformation $W^{\pm}_{\mu}(x) \to W^{\mp}_{\nu}(\bar{x}) P^{\nu}_{\mu} CP$ -Invarianz von $\int d^4x \mathcal{L}_{cc}$ erreicht werden kann, falls

$$J^{\mu}(x) \to P^{\mu}{}_{\nu} J^{\nu\dagger}(\bar{x}) \ .$$

Welche Eigenschaft muss die CKM-Matrix V_{ij} haben, damit dies gilt?

(Für weniger als drei Teilchenfamilien kann diese Eigenschaft stets durch einen unitären Basiswechsel hergestellt werden, sodaß CP-Verletzung durch \mathcal{L}_{cc} im Standardmodell mindestens drei Teilchenfamilien erfordert. Für diese Erkenntnis wurde Kobayashi und Maskawa 2008 der *Nobelpreis für Physik* verliehen.)