Abgabetermin: Donnerstag, 22.01.09

(21) Geladenes Klein-Gordon-Feld

4 P.

Die Bewegungsgleichungen einer Feldtheorie folgen aus dem Variationsprinzip, wonach das Wirkungsfunktional

$$S[\varphi] = \int_{V} d^{4}x \ \mathcal{L}(\varphi, \partial_{\mu}\varphi)$$

stationär unter beliebigen Variationen der Felder $\varphi^i(x) \to \varphi^i(x) + \delta \varphi^i(x)$ ist, die auf dem Rand verschwinden, $\delta \varphi^i(x) = 0$ für $x \in \partial V$. Mit der durch die Entwicklung

$$S[\varphi + \delta \varphi] = S[\varphi] + \int_{V} d^{4}x \sum_{i} \delta \varphi^{i}(x) \frac{\delta S}{\delta \varphi^{i}(x)} + O(\delta \varphi^{2})$$

definierten Variationsableitung $\delta S/\delta \varphi^i(x)$ der Wirkung nach den Feldern lauten die Bewegungsgleichungen dann

$$\frac{\delta S}{\delta \varphi^i(x)} = 0 \ .$$

a) Bestimmen Sie damit die Bewegungsgleichungen des komplexen geladenen Klein–Gordon-Felds $\phi(x)$ mit Lagrange-Dichte

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} D^{\mu}\phi - m^2 \phi^{\dagger}\phi ,$$

wobei $D_{\mu}\phi = (\partial_{\mu} + ieA_{\mu})\phi$ die kovariante Ableitung bezeichnet und wir $\hbar = c = 1$ gesetzt haben. Hier können Sie ϕ und ϕ^{\dagger} als unabhängige Variablen φ^{1} und φ^{2} verwenden.

b) Die Wirkung ist invariant unter globalen Phasentransformationen $\phi'(x) = e^{i\alpha}\phi(x)$ mit konstantem $\alpha \in \mathbb{R}$. Zeigen Sie, daß

$$j^{\mu} = -\sum_{i} \delta \varphi^{i}(x) \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \varphi^{i}(x)} \quad \text{mit} \quad \delta \varphi^{i}(x) = \frac{\partial \varphi^{i\prime}(x)}{\partial \alpha} \Big|_{\alpha=0}$$

(bis auf einen Faktor 1/2m) der zugehörige aus der Vorlesung bekannte Noether-Strom ist.

(22) Darstellungen der Clifford-Algebra

4 P.

Drei häufig verwendete irreduzible Darstellungen der Clifford-Algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$ sind die chirale oder Weyl-Darstellung,

$$\gamma^0 = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & -\sigma_i \\ \sigma_i & 0 \end{pmatrix},$$

die Dirac-Darstellung,

$$\gamma_D^0 = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}, \quad \gamma_D^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix},$$

und die Majorana-Darstellung,

$$\gamma_M^0 = \begin{pmatrix} \sigma_2 & 0 \\ 0 & \sigma_2 \end{pmatrix}, \quad \gamma_M^1 = \begin{pmatrix} \mathrm{i}\sigma_3 & 0 \\ 0 & \mathrm{i}\sigma_3 \end{pmatrix}, \quad \gamma_M^2 = \begin{pmatrix} 0 & \mathrm{i}\sigma_1 \\ \mathrm{i}\sigma_1 & 0 \end{pmatrix}, \quad \gamma_M^3 = \begin{pmatrix} \mathrm{i}\sigma_1 & 0 \\ 0 & -\mathrm{i}\sigma_1 \end{pmatrix}.$$

Zeigen Sie, daß diese Darstellungen unitär äquivalent sind, d.h., daß $\gamma_D^\mu=U_D\gamma^\mu U_D^{-1}$ sowie $\gamma_M^\mu=U_M\gamma^\mu U_M^{-1}$ gilt mit Matrizen

$$U_D = rac{1}{\sqrt{2}} egin{pmatrix} \mathbb{1} & \mathbb{1} \ \mathbb{1} & -\mathbb{1} \end{pmatrix}, \quad U_M = rac{1}{\sqrt{2}} egin{pmatrix} \sigma_3 & \mathrm{i}\sigma_1 \ \sigma_2 & \mathbb{1} \end{pmatrix}.$$

Welcher Zusammenhang besteht zwischen den Spinoren ψ und ψ_D bzw. ψ_M , die die Dirac-Gleichung in der jeweiligen Darstellung erfüllen?

(23) Identitäten für Gamma-Matrizen

3 P.

Zeigen Sie nur unter Benutzung der Clifford-Algebra, ohne auf eine konkrete Darstellung zurückzugreifen, die folgenden Identitäten ($p \equiv p_{\mu} \gamma^{\mu}$):

- a) $\gamma^{\mu}\gamma_{\mu} = 41$,
- b) $\gamma^{\mu} \not p \gamma_{\mu} = -2 \not p$,
- c) $\gamma^{\mu} p q \gamma_{\mu} = 4p \cdot q \mathbb{1}$.