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1 Introduction to the path integrals

Path integration, first developed by Feynman[4] in 1948, has come to be an elegant alternative to Schrödingers
and Heißenbergs description of quantum theory. Its similarity to least-action principles in classical physics,
provides with an intuitive interpretation of the nature of quantum processes. While classical trajectories in
phase space extremize some sort of action S, quantum mechanical transition amplitudes can be described as
an interference of all possible paths, weighted by a pure phase e

i
~S . In this sum, the classical trajectory is only

one of a multitude of possible trajectories, contributing to the evolution of the system.

Though lacking a mathematically solid foundation, the theory of path integration can readily be applied to
several known quantum mechanical systems. Its power though, lies in its generalizability to field theories, thus
constituting an alternative to the 2nd quantization approach. For more on the latter see any standard QFT
book, for example Greiner[6].

This rather quick and dirty article is meant to provide with an introduction to one-parameter path integrals
and its applications to various problems of non-relativistic quantum theory. It is based mainly on the books of
Swanson[1] and Kleinert[2]. Thorough introductions can also be found in [3] and [5].

1.1 The canonical representation

We shall “derive” the path-integral formulation for n-dimensional Hamiltonians of the form

Ĥ(t) = T (P̂, t) + V (X̂, t) (1.1)

for transitions between the generalized eigenstates |xα〉 of the position operator X̂. Let Û(t, t0) be the propagator

of Ĥ, then the transition probability from |xα〉 to |xβ〉 from time tα to time tβ , is given by
∣∣∣〈xβ | Û(tβ , tα) |xα〉

∣∣∣
2

.
The complex scalar

〈xβ , tβ |xα, tα〉 := 〈xβ | Û(tβ , tα) |xα〉 (1.2)

is called transition amplitude.

Now let N ∈ N, slice the time span [tα, tβ ] into N equidistant pieces of length ε := (tβ − tα)/N and set
tj := tα + j · ε. We may write (1.2) in the form

〈xβ , tβ |xα, tα〉 = 〈xβ | Û(tN , tN−1) . . . Û(t1, t0) |xα〉

=
∫
dnx1 . . . d

nxN−1 〈xβ | Û(tN , tN−1) |xN−1〉 〈xN−1| Û(tN−1, tN−2) |xN−2〉 ... 〈x1| Û(t1, t0) |xα〉

=
∫
dnx1 . . . d

nxN−1

N−1∏

j=0

〈xj+1| Û(tj+1, tj) |xj〉 (1.3)

whereas xN := xβ , x0 := xα. For mall enough time intervals ε we may approximate

Û(tj+1, tj) ≈ exp
[
− iε

~
Ĥ(tj)

]
. (1.4)

Using

exp
[
− iε

~

H(P̂,X̂,t)︷ ︸︸ ︷(
T (P̂, t) + V (X̂, t)

) ]
(A.5)
= exp

[
− iε

~
T (P̂, t)

]
exp

[
− iε

~
V (X̂, t)

]
+O(ε2) , (1.5)
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we can write

〈xj+1| Û(tj+1, tj) |xj〉
(1.4)

&(1.5)
≈

∫
dnpj 〈xj+1| exp

[
− iε

~
T (P̂, tj)

]
|pj〉 〈pj | exp

[
− iε

~
V (X̂, tj)

]
|xj〉

=
∫
dnpj exp

[
− iε

~
(T (pj , tj) + V (xj , tj))

]
〈xj+1 |pj〉︸ ︷︷ ︸

exp[ipjxj+1/~]

(2π~)
n
2

〈pj |xj〉︸ ︷︷ ︸
exp[−ipjxj/~]

(2π~)
n
2

=
∫

dnpj
(2π~)n

exp
[
− iε

~
H(xj ,pj , tj)

]
· exp

[
i

~
(xj+1 − xj) · pj

]
(1.6)

and the transition amplitude (1.3) becomes

〈xβ , tβ |xα, tα〉 = lim
N→∞

∫
dnx1 . . . d

nxN−1

∫
dnp0

(2π~)n
. . .

dnpN−1

(2π~)n

exp


 iε

~

N−1∑

j=0

[
1
ε

(xj+1 − xj) · pj −H(xj ,pj , tj)
]
 . (1.7)

We interpret the value xj as position and pj as momentum of the particle at time tj := tα+j ·ε along a piecewise
linear path (see fig. 1.1). The term ẋj := (xj+1 − xj)/ε then becomes the approximate velocity of the particle
between the times tj , tj+1. As n→∞ and ε ∼ 1

N → 0, the sum in (1.7) goes over to the Riemann-integral

tβ∫

tα

[ẋ(t) · p(t)−H(x(t),p(t), t)]︸ ︷︷ ︸
L(x,p,t)

dt =: S[x,p] (1.8)

of the Lagrangian L along the path x(t),p(t), described by the coordinates x0, ..,xN & p0, ..,pN at the more
and more dense sample-times t0, .., tN . We write

(tβ ,xβ)∫

(tα,xα)

Dx Dp exp
[
i

~
S[x,p]

]
:= lim
N→∞

∫
dnx1 . . . d

nxN−1

∫
dnp0

(2π~)n
. . .

dnpN−1

(2π~)n

exp


 iε

~

N−1∑

j=0

[
1
ε

(xj+1 − xj) · pj −H(xj ,pj , tj)
]
 (1.9)

and call
∫
Dx Dp eS[x,p] a path integral. It can be interpreted as an integral over all possible paths x(t), p(t)

connecting xα and xβ between the times tα & tβ , weighted with the factor eS[x,p], whereas S[x,p] is exactly
the classical mechanical action of x,p. Thus, the transition amplitude

〈xβ | Û(tβ , tα) |xα〉 =

(tβ ,xβ)∫

(tα,xα)

Dx Dp exp
[
i

~

tβ∫

tα

L(x,p, t) dt
]

(1.10)

in a way results from a superposition of all possible paths of the particle, connecting xα and xβ . While all paths
contribute to the amplitude with the same weight, to each corresponds a different complex phase. Note how in
(1.9), there is always one integration more for the particle momentum than position.
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1.2 Path integrals over configuration space

In literature one often finds a somewhat different kind of path integral, where integration only covers paths in
configuration space. For special kinds of Hamiltonians this is indeed equivalent to (1.10), as the momentum
integrals can be evaluated right away. Suppose the Hamiltonian is of the form1

H(x,p, t) =
1
2
pTM−1p + a(x, t) · p + V (x, t) , (1.11)

with M ∈ Rn×n as symmetric, positive definite matrix and a : Rn × R→ Rn. Then

∫
dnpj

(2π~)n
exp

[
iε

~

[
1
ε

(xj+1 − xj) · pj −H(xj ,pj , tj)
] ] ∣∣∣∣∣ aj := a(xj , tj)

(1.11)
=

e−
iε
~ V (xj ,tj)

(2π~)n
·
∫
dnpj exp

[
− iε

2~
· pTj M−1pj −

iε

~
aj · pj +

i

~
(xj+1 − xj) · pj

]

(A.2)
=

√
det M

(2π~iε)n
· exp

{
iε

~

[
1

2ε2
(xj+1 − xj)TM(xj+1 − xj) +

1
2
aTj Maj −

1
ε

(xj+1 − xj)TMaj − V (xj)
]}

=

√
det M

(2π~iε)n
· exp

[
iε

~
· L
(
xj ,

(xj+1 − xj)
ε

, tj

)]
, (1.12)

whereas

L(x, ẋ, t) =
1
2
ẋTMẋ +

1
2
a(x, t)TMa(x, t)− ẋTMa(x, t)− V (x, t) (1.13)

is the classical Lagrangian corresponding to (1.11), this time as a function of x, ẋ. We define

(tβ ,xβ)∫

(tα,xα)

D̃x exp
[
i

~
S[x]

]
:= lim

N→∞

(
det M

(2π~iε)n

)N
2
∫
dnx1 . . . d

nxN−1 exp


 iε

~

N−1∑

j=0

L
(
xj ,

(xj+1 − xj)
ε

, tj

)


(1.14)

and notice that (1.10) becomes

〈xβ | Û(tβ , tα) |xα〉 =

(tβ ,xβ)∫

(tα,xα)

D̃x exp
[
i

~
S[x]

]
, (1.15)

with S[x] :=
tβ∫
tα

L(x, ẋ, t) dt as the classical action of the path x(t).

1Whereas we assume the path integral formulation to be generalizable beyond the standard form H(x,p) = T (p) + V (x).
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tα tβε
︸︷︷︸

xα

xβ

x1

xN−1

Figure 1.1: On the derivation of the path-integral formu-
lation of transition amplitudes.

This path integral formulation, considering only paths in configuration space, was first introduced by Feynman[4].

1.3 The concept of quantum fluctuations

In the classical limit that the action S[x,p] takes on values much larger than ~, paths far away from the
stationary one, lead to fast oscillations of the integrant in (1.10), thus canceling each other out. The leading
order contributions to the transition amplitude 〈xβ |U(tβ , tα) |xα〉 then comes from nearly classical trajectories
x,p. On the other hand, approaching the quantum limit (~ ≈ S[x,p]) results in other classically impossible
paths, so called quantum fluctuations, becoming relevant and contributing to the transition amplitude.

Let xc(t),pc(t) be a classical trajectory for the Lagrangian L, that is, extremizing the action S[xc,pc] =∫ tβ
tα
L(xc,pc) dt. For any other path x(t),p(t), define the path fluctuation δx := x− xc and δp := p− pc with

the constraint δx(tα) = δx(tβ) = 0. Then the action becomes2

S[x,p] = S[xc,pc] +
dS

d(x,p)

∣∣∣∣
(xc,pc)

(δx, δp) +
1
2!

d2S

d(x,p)2

∣∣∣∣
(xc,pc)

(δx, δp)2 +O((δx, δp)3) . (1.16)

Since xc,pc extremizes the action S, the linear term in (δx, δp) vanishes and we obtain the transition amplitude

〈xβ , tβ |xα, tα〉 =e
i
~S[xc,pc]

(tβ ,0)∫

(tα,0)

Dδx Dδp exp

[
i

2!~
d2S

d(x,p)2

∣∣∣∣xc
pc

(δx, δp)2 +O((δx, δp)3)

]

=e
i
~S[xc,pc]

(tβ ,0)∫

(tα,0)

Dδx Dδp exp


 i

2!~

tβ∫

tα

(δx(t), δp(t))T
∂2L

∂(x,p)2

∣∣∣∣xc(t)
pc(t)

(δx(t), δp(t)) +O(δx3)




=:e
i
~S[xc,pc] · F (xβ , tβ ; xα, tα) , (1.17)

with the so called fluctuation factor F (xβ , tβ ; xα, tα). If all derivatives of L higher than 2nd order vanish, then
∂2L

∂(x,p)2 does not depend on x,p and the fluctuation factor only depends on the times tα, tβ . In fact, if L is
time-independent, then F (tβ , tα) = F (tβ − tα).

Suppose for example a Lagrangian of the form3

L(x, ẋ) =
1
2
ẋTMẋ + xTAẋ− xTVx− l(x, ẋ) (1.18)

2Where dS
dx

is the derivative of the mapping S : Φq × Φp → R on the (assumed) Banach function spaces Φq ,Φp (configuration
& momentum paths).

3Note that this is indeed the most general Lagrangian with vanishing 2nd derivatives.
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with M,A,V ∈ Rn×n as real, symmetric matrices, M positive definite and l : Rn → R linear. Similarly to (1.17),
it leads to the fluctuation factor4

F (tβ − tα) =

(tβ ,0)∫

(tα,0)

D̃δx exp


 i

2!~

tβ∫

tα

(δx(t), δẋ(t))T
∂2L

∂(x, ẋ)2

∣∣∣∣xc(t)
ẋc(t)

(δx(t), δẋ(t))




=

(tβ ,0)∫

(tα,0)

D̃x exp


 i

~

tβ∫

tα

[
1
2
ẋTMẋ + ẋTAx− xTVx

]
dt




(1.14)
= lim

N→∞

(
det M

(2π~iε)n

)N+1
2
∫
dnx1...d

nxN

exp


 iε

~

N∑

j=0

[
1

2ε2
(xj+1 − xj)TM(xj+1 − xj) +

1
ε

(xj+1 − xj)TAxj − xjVxj

]


= lim
N→∞

(
det M

(2π~iε)n

)N+1
2
∫
dnNx exp

[
im

2~ε
· xTLNx

] ∣∣∣∣∣ m := n
√

det M

(A.3)
= lim

N→∞

[ m

2π~i

]n
2 · 1√

εn det LN

∣∣∣∣∣ ε :=
(tβ − tα)
N + 1

(1.19)

with the N ×N matrix

LN :=
1
m
·




2M−2εA
−2ε2V −M + εA 0 0 0
−M + εA 2M−2εA

−2ε2V −M + εA 0 0
0 −M + εA 2M−2εA

−2ε2V −M + εA 0

0 0 −M + εA 2M−2εA
−2ε2V

. . .

. . .

0 0 0 0 . . . 2M−2εA
−2ε2V




(1.20)

and m = n
√

det M as the geometric mean mass of the ”particle”.

1.4 Retrieving stationary states from transition amplitudes

Let {ΨE}E be the energy-eigenstates of the time-independent Hamiltonian Ĥ to the energy values E. We shall
assume Ĥ to be non-degenerate. We can thus write

〈xβ | Û(tβ , tα) |xα〉 =
∫
dE 〈xβ |ΨE〉 〈ΨE |U(tβ , tα) |xα〉

=
∫
dE ΨE(xβ)Ψ∗E(xα)e−

i
~ (tβ−tα) . (1.21)

4Note that (1.18) is of the type (1.13): Set

a(x) := M−1(Ax + l2) , V (x) := xT Vx + l1 · x +
1

2
a(x)T Ma(x) ,

whereas l(x, ẋ) = l1 · x + l2 · ẋ.
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If τxβ ,xα(E) is the Fourier-transformed of the transition amplitude, that is

〈xβ | Û(tβ , tα)︸ ︷︷ ︸
Û(tβ−tα)

|xα〉 =
∫
dE τxβ ,xα(E) · e− i

~E(tβ−tα) , (1.22)

then a comparison with (1.21) yields

ΨE(xβ)Ψ∗E(xα) = τxβ ,xα(E) (1.23)

and thus (up to constant factors) the states ΨE . Thus, the transition amplitudes calculated by means of
path-integrals, are indeed adequate to completely describe the stationary energy-states of a time-independent,
non-degenerate quantum system.

2 Applications to quantum statistics

2.1 The quantum-mechanical partition function

As is known, for a quantum-mechanical system with fixed particle number in thermal equilibrium5 with its
environment, the canonical partition function6

Z(β) := trace
(
e−βĤ

)
(2.1)

holds all thermodynamical information about the system7. By analytically extending the propagation operator
Û(t) := exp

[
− i

~ tĤ
]
to imaginary times and identifying t := −i~β, one immediately obtains a connection to

(2.1). Thus, to describe the thermodynamical equilibrium properties of the system, it suffices to study the trace
of Û and perform an analytical continuation to the imaginary time axis. This transition to imaginary times, is
called a Wick-rotation, and allows the study of quantum-statistical problems by means of quantum-mechanical
methods.

For an n-dimensional particle with Hamiltonian Ĥ(P̂, X̂) = T (P̂) + U(X̂), we can write

Z(β) =
∫
dxα 〈xα| Û(−i~β) |xα〉

(1.10)
=

∫
dxα

∫ (−i~β,xα)

(0,xα)

Dx Dp e
i
~S[x,p]

=:
∮ −i~β

0

Dx Dp e
i
~S[x,p] (2.2)

where the “
∮
” is to denote the periodic boundary conditions for the path integration performed. Whereas in

classical statistical mechanics, the partition function

Zcl(β) ∼
∫
dnx dnp e−βH(x,p) (2.3)

is constructed by weighting each microstate (x,p) with the factor e−βH(x,p), in quantum statistics each path
x(t),p(t) is weighted by the factor e

i
~S[x,p], with the action S[x,p] of a path replacing the energy H(x,p) of a

state.

Expression (2.3) can also be written in a more direct form: By replacing t = −iτ and defining ε̃ := τ/N , the

5That is, at fixed temperature. We shall assume Ĥ to be time-independent.
6With β := 1/kT as inverse temperature.
7As an example, its free energy and entropy are given by F = −kT lnZ and S = −∂TF respectively.
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limit (1.9) takes the form

(t,xβ)∫

(0,xα)

Dx Dp e
i
~S[x,p] = lim

N→∞

∫
dnx1 . . . d

nxN−1

∫
dnp0

(2π~)n
. . .

dnpN−1

(2π~)n

exp

[
− ε̃

~

N−1∑

j=0

[
− i
ε̃

(xj+1 − xj) · pj +H(xj ,pj)
]

︸ ︷︷ ︸
N→∞−→ − 1

~

τR
0
[−iẋ(τ ′)p(τ ′)+H(x(τ ′),p(τ ′))] dτ ′

]

=

(τ,xβ)∫

(0,xα)

Dx Dp exp
[
−1

~
Se[x,p]

]
(2.4)

with

Se[x,p] :=

τ∫

0

[−iẋ(τ ′)p(τ ′) +H(x(τ ′),p(τ ′))] dτ ′ (2.5)

as the so called euclidean action of the paths x(τ ′),p(τ ′). The canonical partition function can therefore be
written as

Z(β) =
∫
dxα

∫ (β~,xα)

(0,xα)

Dx Dp e−
1
~Se[x,p] =

∮ β~

0

Dx Dp exp


−1

~

β~∫

0

[−iẋp +H(x,p)] dτ ′


 . (2.6)

2.2 Particle density & classical limit

Consider a system in thermal equilibrium, with Hamiltonian Ĥ. The density operator for the system is given
by

ρ̂ =
e−βĤ

Z
(2.7)

yielding the expected particle density

ρ(xα) = 〈xα| ρ̂ |xα〉 = Z−1

(β~,xα)∫

(0,xα)

Dx Dp e−
1
~Se[x,p] (2.8)

at position xα.

Now suppose the Hamiltonian to be of the standard form Ĥ = P̂2

2m +V (X̂). Then, as is shown in Kleinert[2], in
the high temperature limit T →∞, (2.8) goes (for sufficiently smooth potentials) over to the classical expression

ρ(xα) T→∞−→
[∫

dnx e−V (x)/kT

]−1

· e−V (xα)/kT = ρcl(xα) . (2.9)
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3 Example: Harmonic oscillator

3.1 The fluctuation factor

Let us consider an n-dimensional harmonic oscillator within an harmonic potential, described by the real,
diagonal matrix Ω ∈ Rn×n, so that

L(x, ẋ) =
m

2
ẋ2 − m

2
xTΩ2x , Ω = diag(ω1, .., ωn) . (3.1)

Thus by section 1.3, the fluctuation factor becomes

F (tβ − tα)
(1.19)

= lim
N→∞

[ m

2π~i

]n
2 · 1√

εn det LN
= lim
N→∞

[ m

2π~i

]n
2 ·

n∏

k=1

1√
εdet LNk

(3.2)

with LN defined as in (1.20) with M := m · 1, A := 0, V := mΩ2/2 and

LNk :=




2− ε2ω2
k −1 0 0 . . . 0

−1 2− ε2ω2
k −1 0

0 −1 2− ε2ω2
k −1

0 0 −1 2− ε2ω2
k

...
. . .

0 2− ε2ω2
k



∈ RN×N . (3.3)

Note how the decomposition of det LN into a product of n determinants det LNk corresponds to the separation
of the n coordinates8. The matrix 1

ε2 LNk corresponds to the bilinear form

1
ε2

LNk : x 7→
N∑

j=1

[
(xj+1 − xj)2

ε2
− ω2

kx
2
j

]
. (3.4)

on RN . It can be interpreted as corresponding to the discrete version of9 (∂†t ∂t−ω2
k), which instead of functions

f : [tα, tβ ]→ R, operates on functions (n-tuples) x : {1, .., n} → R.

We now show that the determinant of the LNk is generally10 given by11

det LNk =
sin(ω̃kε(N + 1))

sin(ω̃kε)
=: aN+1 (3.5)

whereas

sin
ω̃kε

2
:=

ωkε

2
. (3.6)

Note that by Leibnitz, from (3.3) one obtains the recursion formula

det LNk = (2− ε2ω2
k) · det LN−1

k − det LN−2
k , N ≥ 2 (3.7)

whereas

det L0
k := 1 , det L1

k = 2− ω2
kε

2 . (3.8)

8Also see appendix A.4.
9Note that any operator D : H → H on a Hilbert-spaceH, can be interpreted as a bilinear form by means of f 7→ 〈f,Df〉 , f ∈ H.

10Without any connection assumed between ε and N .
11For a justification of this ansatz see Kleinert[2].
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By observing that aN also satisfies the recursion formula (3.7):

aN =
sin(ω̃kεN)
sin(ω̃kε)

=
sin [ω̃kε(N − 1)] cos(ω̃kε) + cos [ω̃kε(N − 1)] sin(ω̃kε)

sin(ω̃kε)

=
2 sin [ω̃kε(N − 1)]

cos(eωkε)︷ ︸︸ ︷[
1− 2 sin2 eωkε

2

]
−
[

sin [ω̃kε(N − 1)] cos(ω̃kε)− cos [ω̃kε(N − 1)] sin(ω̃kε)
]

sin(ω̃kε)

(3.6)
=

2 sin [ω̃kε(N − 1)]
(

1− ω2
kε

2

2

)
− sin [ω̃kε(N − 2)]

sin(ω̃kε)
= aN−1 · (2− ω2

kε
2)− aN−2 (3.9)

and the initial conditions (3.15):

a1 = 1 , a2 =
sin(2ω̃kε)
sin(ω̃kε)

= 2 cos(ω̃kε) = 2
(

1− 2 sin2 eωkε
2

)
(3.6)
= 2− ω2

kε
2 (3.10)

we conclude that indeed det LNk = aN+1.

Thus, expression (3.2) evaluates to

F (tβ − tα)
(3.5)
= lim

N→∞

[ m

2π~i

]n
2 ·

n∏

k=1

√
sin(ω̃kε)

ε sin [ω̃kε(N + 1)]
. (3.11)

Recall that ε = (tβ − tα)/(N + 1) and notice how ω̃k
ε→0−→ ωk. Hence (3.11) yields the fluctuation factor:

F (tβ − tα) =
[ m

2π~i

]n
2 ·

n∏

k=1

√
ωk

sin [ωk(tβ − tα)]
(3.12)

for the n-dimensional harmonic oscillator. In the special case of a free particle (Ω → 0) the fluctuation factor
becomes

F (tβ − tα) =
[

m

2π~i(tβ − tα)

]n
2

. (3.13)

From (3.5) one sees that, det LNk is only then positive definite, when |ω̃k(tβ − tα)| < π. For larger time intervals,
the Fresnel-integral (1.19) would no longer evaluate as (A.3), but differ by phase factors e

iπ
2 κ , κ ∈ Z from (3.13),

depending on the actual length |tβ − tα|. See Kleinert[2] for a more thorough elaboration on the issue.

The actual transition amplitude (1.15) is obtained by multiplying the fluctuation factor by e
i
~S[xc], with S[xc]

as the action of the classical trajectory xc(t). It is straightforward to calculate the classical trajectory xc
connecting the points xα,xβ at respective times tα, tβ for the harmonic oscillator and obtain

S[xc] =
n∑

k=1

mωk
2 sin [ωk(tβ − tα)]

·
[
((xkα)2 + (xkβ)2) cos [ωk(tβ − tα)]− 2xkαx

k
β

]
(3.14)

Note

The results in section 1.3 and in particular example 3 indicate that, the problem of calculating the fluctuation
factor for a given Lagrangian, often lies in finding the determinant of the Bilinear form LN appearing in the
lattice-version of the action and performing a meaningful limiting procedure. Back to the above example, let
us consider w.l.o.g. the one-dimensional case (ω := ω1). Let ε > 0 be fixed and define DN := det LN1 , then
recursion formula 3.7 can be rewritten in the form

1
ε

[
1
ε

(
DN −DN−1

)
− 1
ε

(
DN−1 −DN−2

)]
+ ω2DN−1 = 0 , N = 2, 3, .. (3.15)
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If we interpret D :=
(
DN

)N=∞
N=0

as a function of N (or n×∞-matrix ) and introduce the differential operators

∇lD(N) :=
1
ε

(
DN −DN−1

)
, ∇rD(N) :=

1
ε

(
DN+1 −DN

)
(3.16)

acting on the index-parameter N , then (3.15) takes the form

[
∇l∇r + ω2

]
D = 0 . (3.17)

This is a special case of the so called Gelfand-Yaglom-Formula, which can be regarded as an equation of motion
for the determinant D(N) as a function of N on the discrete time-lattice. The start values are in view of (3.15),
taken to be D0 := 1 and D1 := 2 − ε2ω2. See Kleinert[2] for a more elaborate treatise of such equations of
motion.

3.2 The partition function for harmonic oscillators

As an example, consider a system of n uncoupled, identical harmonic oscillators. It is described by the Hamil-
tonian

H(x,p) =
p2

2m
+
m

2
ω2x2 , x,p ∈ Rn (3.18)

and by (3) has transition amplitude

〈xβ | Û(t) |xα〉 =
[

mω

i2π~ sin(ωt)

]n
2

· exp
[

imω

2~ sin(ωt)
·
[
(x2
α + x2

β) cos(ωt)− 2xαxβ
]]

. (3.19)

Hence in view of (2.2), the canonical partition function is given by

Z(β) =
[

mω

i2π~ sin(ωt)

]n
2

·
∫

xα exp
[
imωx2

α

~ sin(ωt)
·
[

cos(ωt)− 1
]] ∣∣∣∣∣ t := −i~β

=
1

[
2 cos(ωt)− 2

]n
2

=
1[

2 sinh
(
ω~β
2

)]n (3.20)

as expected[2].

4 Charged particles in magnetic fields

Using the results from section 1, we shall calculate the transition elements of a non-relativistic charged particle
within an electromagnetic field. Though in principle, the Lagrangian is of the form (1.18), the techniques
developed in sections 1.2 and 1.3 turn out to be impractical. We shall thus employ a more direct, brute force
method[2] for evaluating the resulting path integral.

4.1 Action & gauge invariance

Consider a non-relativistic particle of mass m and charge q within an electromagnetic field, described by12 the
vector potential A(x) and scalar field Φ(x). Its Hamiltonian is given by

H(x,p) =
1

2m
(p− qA(x))2 + qΦ(x) (4.1)

12So that B = ∇×A and E = −∇Φ− Ȧ.
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which implies the action

S[x,p] =

tβ∫

tα

[
pẋ− 1

2m
(p− qA(x))2 − qΦ(x)

]

︸ ︷︷ ︸
L(x,p)

dt (4.2)

for any path (x,p) within times tα, tβ .

Alternatively, the action can be written as

S[x] =

tβ∫

tα

[m
2

ẋ2 + qẋA(x)− qΦ(x)
]

︸ ︷︷ ︸
L(x,ẋ)

dt . (4.3)

Now consider any arbitrary gauge transformation A′ := A +∇f, Φ′ := Φ− ∂tf , then the Lagrangian becomes

L′(x, ẋ) = L(x, ẋ) + (ẋ∇f + ∂tf) = L(x, ẋ) +
d

dt
f(x(t)) (4.4)

which in turn induces the action

S′[x] =

tβ∫

tα

L′(x, ẋ) dt = S[x] + q · [f(xβ)− f(xα)] (4.5)

The boundary term Sbd := q [f(xβ)− f(xα)] corresponds to an additional phase factor in the transition am-
plitude 〈xβ , t |xα, 0〉′ and has no effect on the diagonal elements 〈xα, t |xα, 0〉′. In particular, the canonical
partition function Z(β) and expected particle density ρ(xα) = 〈xα,−iβ~ |xα, 0〉 /Z(β) are left unchanged.
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4.2 Example: Homogeneous B-field

Suppose now that A(x) = (0, xB, 0) (magnetic field along z axis) and Φ = 0. Then the transition amplitude
from xα to xβ within time t is given by

〈xβ | Û(t) |xα〉 = lim
N→∞

∫
d3x1 . . . d

3xN

∫
d3p0

(2π~)3
. . .

d3pN
(2π~)3

exp


 iε

~

N∑

j=0

[
1
ε

(xj+1 − xj) · pj −
1

2m
(pj − qA(x))2

]


∣∣∣ ε :=
t

(N + 1)

=
∫
dx1..dxN

d3p0

(2π~)3
..
d3pN
(2π~)3

exp


 iε

~

N∑

j=0

[
1
ε

(xj+1 − xj)pxj −
1

2m
[
(pxj )2 + (pyj − qxjB)2 + (pzj )

2
]]



×
∫
dy1..dyN dz1..dzN exp

[
i

~

N∑

j=0

(yj+1 − yj)pyj + (zj+1 − zj)pzj
︸ ︷︷ ︸

yβp
y
N−yαp

y
0+zβp

z
N−zαpz0

+
PN
j=1[yj(pyj−1−p

y
j )+zj(p

z
j−1−pzj )]

]

︸ ︷︷ ︸
(2π~)2N ·exp[ i~ (yβpyN−yαpy0+zβpzN−zαpz0)]·QN

j=1 δ(p
y
j−1−p

y
j )δ(p

z
j−1−pzj )

=
∫

dpy0
2π~

dpz0
2π~

exp
[
i

~

[
py0(yβ − yα) + pz0(zβ − zα)− (pz0)2t

2m

]]

×
∫
dx1..dxN

dpx0
2π~

..
dpxN
2π~

exp

[
iε

~

N∑

j=0

[
1
ε

(xj+1 − xj)pxj −
1

2m
[
(pxj )2 + (py0 − qxjB)2

]
︸ ︷︷ ︸

(px
j
)2

2m +m
2
q2B2

m2

„
xj−

p
y
0
qB

«2

]]

︸ ︷︷ ︸
transition amplitude for 1-dim. harmonic oscillator

with frequency ωc:= qB
m , center x0:=

p
y
0
qB

=
∫

dpy0
2π~

dpz0
2π~

exp
[
i

~

[
py0(yβ − yα) + pz0(zβ − zα)− (pz0)2t

2m

]]
·
〈
xβ − py0

qB , t
∣∣∣xα − py0

qB , 0
〉
ωc︸ ︷︷ ︸

transition amplitude for
harmonic oscillator
with frequency ωc

(A.2)
=
√

m

i2π~t
· exp

[
im

2~
(zβ − zα)2

t

]

︸ ︷︷ ︸
transition amplitude for
1-dim. particle along
z-axis, from zα to zβ

·
〈
x⊥β , t

∣∣x⊥α , 0
〉

∣∣∣∣∣ (integration of pz0) (4.6)

with the transversal transition amplitude

〈
x⊥β , t

∣∣x⊥α , 0
〉

:=
mωc
2π~

∫
dx0 exp

[
i

~
mωcx0(yβ − yα)

]
· 〈xβ − x0, t |xα − x0, 0〉ωc (4.7)
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and cyclotron frequency ωc := qB/m. From section 3 we know that

〈xβ − x0, t |xα − x0, 0〉

=
√

mωc
2π~i sin(ωct)

· exp
{

imωc
2~ sin(ωct)

[(
(xα − x0)2 + (xβ − x0)2

)
cos(ωct)− 2 (xα − x0) (xβ − x0)

]}
. (4.8)

Inserting into (4.7) and integrating yields

〈
x⊥β , t

∣∣x⊥α , 0
〉

=
mωc

4iπ~ sin ωct
2

· exp
{
im

2~

[
ωc(xα + xβ)(yβ − yα) +

ωc
2

cot
(
ωct
2

) [
(xβ − xα)2 + (yβ − yα)2

]]}
.

(4.9)

Together with (4.6), we finally obtain the transition amplitude

〈xβ , t |xα〉 =
[ m

2π~it

] 3
2 · ωct

2 sin ωct
2

· exp
[
i

~
[Scl + Sbd]

]
(4.10)

with the classical action

Scl =
m

2

[
(zβ − zα)2

t
+ ωc(xαyβ − xβyα) +

ωc
2

cot
(
ωct
2

) [
(xβ − xα)2 + (yβ − yα)2

]]
(4.11)

and boundary action

Sbd =
mωc

2
(xβyβ − xαyα) . (4.12)

The latter actually disappears by choosing the gauge Ã(x) := A(x) +∇f = 1
2B × x with the gauge function

f(x) = − 1
2xA(x).13. Indeed, in view of section 4.1, this gauge transformation leads to the boundary term

q [f(xβ)− f(xα)] = qB
2 [xαyα − xβyβ ] = −Sbd in the new action, yielding the transition amplitude

〈xβ , t |xα, 0〉′ =
[ m

2π~it

] 3
2 · ωct

2 sin ωct
2

· exp
[
i

~
Scl

]
. (4.13)

For further details into the subject see Kleinert[2].

13Recall that for any κ-homogeneous vector-potential A(x), inducing the magnetic field B := ∇×A, the gauge f(x) := −xA(x)
κ+1

transforms A into A′ := A +∇f = B×x
κ+1

.
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A Appendix

This appendix provides with some auxiliary statements, used throughout this article.

A.1 Gauß-Integrals

For a real, symmetric, positive-definite matrix Â ∈ Rn×n and vector b ∈ Rn one has
∫

Rn

dnx exp
[
−xT Âx± bTx

]
=
√

πn

det Â
· exp

[
1
4
bT Â−1b

]
(A.1)

and
∫

Rn

dnx exp
[
−ixT Âx± ibTx

]
=
√

πn

in det Â
· exp

[
i

4
bT Â−1b

]
. (A.2)

whereas
√
i := e

iπ
4 . By complex conjugation, one moreover obtains

∫

Rn

dnx exp
[
ixT Âx± ibTx

]
=
√
πnin

det Â
· exp

[
− i

4
bT Â−1b

]
. (A.3)

Proofs of these statements can be found in Swanson[1].

A.2 Determinants

Let Aij ∈ Cn×n, i, j = 1, .., N be diagonal matrices. Then

det



A11 A12 . . .
A21 A22

...
. . .




︸ ︷︷ ︸
∈CnN×nN

=
n∏

k=1

det



A11
kk A12

kk . . .
A21
kk A22

kk
...

. . .




︸ ︷︷ ︸
∈CN×N

(A.4)

holds.

A.3 The Zassenhaus formula

Le X,Y be in some Lie algebra g of a simply-connected Lie group G. Then for ε > 0

eε(X+Y ) = eεXeεY e−
ε2
2 [X,Y ]eO(ε3) (A.5)

holds.
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