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1 Conventions

We use the metric signature (+,−, ..,−), denoting 4-vectors x with bold symbols. We denote by xy the
Euclidean scalar product of the 4-vectors x,y, by g(x,y) = x0y0 −

∑3
j=1 x

jyj their Minkowskian one. Greek
indices run (unless stated otherwise) from 0 to 3, latin ones only from 1 to 3. Components of linear functionals
are written down, components of vectors up. Operators are symbolized with a hat “̂”.
We use the isometric Fourier-transform and natural units ~ = 1 = c.

2 Introduction

The path integral formalism[1, 2, 9, 18] developed by Feynman[3] in the first half of the 20th century, has come
to be a successful complement to the non-relativistic quantum mechanical formalism developed by Schrödinger
and Heisenberg. For a wide class of Hamiltonians Ĥ = Ĥ(x̂, p̂), the Green’s function for the Schrödinger
equation, that is, the transition amplitude

〈xout, tout |xin, tin〉 := 〈xout| e−i(tout−tin)Ĥ |xin〉 , (2.1)

can be expressed by means of a so called path integral

〈xout, tout |xin, tin〉 =

(tout,xout)∫
(tin,xin)

Dx Dp exp

[
iS[x,p]

]
. (2.2)

Expression (2.2) represents an interference of all possible trajectories x(t),p(t) from point xin to point xout

during time tin − tout, each with the action

S[x,p] :=

tout∫
tin

[ẋp−H(x,p)] dt (2.3)

as a phase. For many special cases of Hamiltonians, such as the ones quadratic in the momentum, the p-integral
can readily be evaluated[1, 18] to yield a path integral

〈xout, tout |xin, tin〉 =

(tout,xout)∫
(tin,xin)

Dx exp

[
i

tout∫
tin

L(x, ẋ) dt

]
(2.4)

solely over configuration-space trajectories, with L as the Lagrangian corresponding to the classical version of
Ĥ. The apparent simplicity of the path integral formalism and its similarity to classical mechanical variational
methods, makes its generalization to functional integrals over fields a promising alternative to the 2nd quanti-
zation description used in quantum field theory and in particular the calculation of N -point correlators[10].

In the 2nd half of the 20th century, a new approach to the calculation of generating functionals and Green’s
functions in field theory appeared, initiated by Fock, Feynman[8] and Schwinger[16]. This so called worldline
formalism can be used to express quantum field theoretic objects, such as Green’s and 1PI-N -point functions,
using solely one-parameter path integrals.

Though simple problems such as the ones handled below, can generally be solved much easier using 2nd quan-
tization methods and Wick contractions, the worldline formalism shows its real strength in more complex
situations. In particular, worldline numerics has lately enjoyed a wide span of applications ranging from the
Casimir effect[20, 21] to pair production in inhomogeneous fields[22, 23]. Furthermore, the intuitive interpreta-
tion of worldline integrals, allows for a completely different insight into the whole theory, just as path integrals
do in quantum mechanics.

Finally, the worldline formalism shows great analogy to similar results in string theory, where string scattering
amplitudes reduce to one-parameter path integral expressions. In fact, as string theory reduces to quantum
field theory in the infinite tension limit, string scattering amplitudes reduce to quantum field theoretic ones,
thus inspiring the development of a worldline formalism eventually without reference to string theory[4, 11, 19].
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The following article aims at introducing this formalism and illustrating its applications to various problems
usually handled by means of 2nd quantization and Feynman diagrams. It is mainly based on [4],[8],[11],[12] and
[15].

3 Green’s function for the KG operator

In 1950, Feynman[8] introduced a one-parameter path-integral expression for the Green’s function of the Klein-
Gordon (KG) operator. We shall in the following briefly illustrate his ideas, mainly as a motivation for what
follows thereafter. Consider the KG equation(

� + σ +m2
)
ϕ(x) = 0 , � := (∂µ − ieAµ)(∂µ − ieAµ) (3.1)

for a spinless, complex field ϕ of charge e, interacting with a background gauge field A and a source σ(x).
Consider now the differential equation

i∂uζ(x, u) = Ĥζ(x, u) , Ĥ := � + σ (3.2)

for the field ζ(x, u), in some 5th parameter u. Since Ĥ does not depend on u, solutions of (3.2) can be written
as combinations of the fundamental solutions

ζ(x, u) = e−iEuϕ(x) , (3.3)

with ϕ solving the eigenvalue problem Ĥϕ
!= Eϕ. In particular, ϕ solves (3.1) if, and only if, E = −m2. Thus,

for any solution ζ(x, u) of (3.2) vanishing for u→ ±∞, the field

ϕ(x) :=
∫
R

du e−im
2uζ(x, u) (3.4)

solves (3.1). Now suppose K(x, u; x′, 0) is the retarded Green’s function for (3.2), that is, solves (3.2) and
satisfies

K(x, 0; x′, 0) = δ(x− x′) , K(x, u; x′, 0) = 0 for u < 0 . (3.5)

Then it is straightforward to show that the 2-point function

G(x,x′) := i

∞∫
0

e−im
2uK(x, u; x′, 0) du (3.6)

is a Green’s function for the Klein-Gordon operator (� +σ+m2). Its domain is the whole R4 and its boundary
condition that it vanishes for ‖x− x′‖ → ∞. From the theory of path integrals, we know that the transition
amplitude for the Schrödinger equation (3.2) is given by

K(x, u; x′, 0) = 〈x| e−iuĤ |x′〉 =

(u,x)∫
(0,x′)

Dy exp

i u∫
0

L(y, ẏ) dτ

 , u ≥ 0 , (3.7)

with

L(y, ẏ) = −1
4
ẏµẏµ + eẏµAµ(y)− σ(y) (3.8)

as the Lagrangian corresponding to the Hamiltonian

H = −pµpµ − e2AµAµ + 2eAµpµ + σ . (3.9)

The final expression for the Green’s function thus becomes

G(x,x′) := i

∞∫
0

du e−im
2u

(u,x)∫
(0,x′)

Dy exp

−i u∫
0

[
1
4
ẏµẏµ − eẏµAµ + σ

]
dτ

 . (3.10)
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4 Applications in QED

Having seen how the worldline formalism can be readily used to express Green’s functions, we shall now turn
to the problem of solving the theory for a spin-1

2 field, of charge e and mass m, interacting with a background
gauge field A and described by the Lagrangian

L = iψγµDµψ −mψψ , Dµ := (∂µ − ieAµ) . (4.1)

We shall not include the kinetic energy term of the gauge field, as we are eventually interested in objects, such
as the polarization tensor, arising from the interaction of the spinor with the gauge field.

The theory is considered to be solved, if its S-matrix, or equivalently, its N -point correlators are known. The
calculation of the latter reduces to the calculation of the so called one-particle irreducible N -point functions,
the functional derivatives1 of the effective action Γ[ψ,ψ,A], a functional on fields[10, 17].

We perform a so called Wick rotation to imaginary times x0 → −ix0, change the fields A0 → iA0 and define
the Euclidean γ-matrices

γ̃0 := γ0 , γ̃j := −iγj . (4.2)

All other coordinates and field components are kept unchanged. We obtain in these new coordinates and fields
the representation for the effective action:

Γ[ψ,ψ,A] = −i ln
∫
Dψ′ Dψ︸ ︷︷ ︸

Grassmann
path integral

′ exp
[
iS[ψ,ψ] +

∫
dx ψ ′(−iγ̃µDµ − im)ψ′

]

= S[ψ,ψ,A]−i ln det [−iγ̃µDµ − im]︸ ︷︷ ︸
Γ1l

+ const (4.3)

The double path integral used above is performed over Grassmann valued paths, with ψ′, ψ
′
as 4-dimensional,

real Grassmann-valued vectors2. The constant in (4.3) is merely dependent on the exact field measure used.

4.1 The one-loop correction to the effective action

Our goal is now, to find a path-integral expression for the 2nd term Γ1l in (4.3), the so called one-loop correction.
Note that Γ1l does only depend on the gauge field A. Using Frullani’s integral identity3

ln detA = Tr lnA = −
∞∫

0

dT

T
Tr e−TA (4.4)

for positive operators A and the fact that[15]

Det [−iγ̃µDµ − im] = Det
1
2
[
(γ̃µp̂µ − eγ̃µAµ)2 +m2

]
= Det

1
2

[
(p̂− eA)2 +

ie

4
[γ̃µ, γ̃ν ]Fµν +m2︸ ︷︷ ︸

D(p̂,Â,eγµeγν)

]
= Det

1
2 D , (4.5)

we obtain the expression

Γ1l[A] =
i

2

∞∫
0

dT

T
Tr e−TD[p̂,A,(eγµeγν)] . (4.6)

1Evaluated at the vacuum expectation value A(x) := 〈0| Â(x) |0〉, which happens in this theory to be A ≡ 0.
2See [1, 7, 18] on Grassmann numbers and Grassmann integrals.
3Up to an additive, universal constant, which shall be ignored from now on.
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Thus, the calculation of Γ1l[A] reduces to the calculation of Tr e−TD. Due to the higher dimension of the
operator D resulting from the γ-matrices γ̃µ, this trace can not be taken simply by integrating over all diagonal
elements 〈x| e−TD |x〉. Instead, one also has to consider the trace over the Hilbert space on which the γ-matrices
act, which is isomorphic to C4.

For this reason, we introduce the fermionic creation and annihilation operators[4]

a±1 :=
1
2

(γ̃1 ± iγ̃3) , a±2 :=
1
2

(γ̃2 ± iγ̃0) , (4.7)

satisfying the known fermionic anticommutation relations, and the real Grassmann variables4 ϑ1, ϑ2, ϑ
1
, ϑ

2
,

anticommuting with the a±1,2 and commuting with the vacuum |0〉. The operators a±1,2 generate the Fock-space
Ha ∼= C4 on which the γ̃-matrices operate, spanned by the induced states |00〉 , |01〉 , |10〉 , |11〉, which could
be used to define a trace on Ha. Unfortunately, these prove to be somewhat cumbersome when it comes to
evaluating Tr e−TD. A more suitable basis is given by the coherent states[13, 14]

|ϑ〉 := exp
[
−ϑ1a+

1 − ϑ2a+
2

]
|0〉

∣∣ϑ〉 := i(ϑ
1 − a+

1 )(ϑ
2 − a+

2 ) |0〉 ,

〈ϑ| := i 〈0| (ϑ1 − a−1 )(ϑ2 − a−2 )
〈
ϑ
∣∣ := 〈0| exp

[
−a−1 ϑ

1 − a−2 ϑ
2
]

, (4.8)

satisfying[4]

1Ha = i

∫
d2ϑ |ϑ〉 〈ϑ| = −i

∫
d2ϑ

∣∣ϑ〉 〈ϑ∣∣ (4.9)

and for any operator U on Ha:

TrU = i

∫
d2ϑ 〈−ϑ|U |ϑ〉 . (4.10)

Using these states, the 1-loop correction to the effective action (4.6) can be written as

Γ1l[A] = −1
2

∞∫
0

dT

T

∫
d4x dϑ1 dϑ2 〈x,−ϑ| e−TD[p̂,A,(eγµeγν)] |x,ϑ〉 . (4.11)

By performing an N -fold slicing of the interval [0, T ] and applying the same techniques of insertion of unities5

as in non-fermionic path integrals and subsequently taking the limit N → ∞, one obtains, after integration of
the momenta, the formal result[11]

Γ1l[A] =
i

2

∞∫
0

dT

T

∮
P

Dx
∮
A

Dψ e
−
TR
0
dτ L(x,ẋ,ψ,ψ̇)

, (4.13)

whereas

L(x, ẋ,ψ, ψ̇) :=
ẋ2

4
+

1
2
ψψ̇ − ieẋA + ieψµψνFµν +m2 . (4.14)

The ψ = (ψ1, .., ψ4) are 4-dimensional, real-Grassmann valued paths. They actually result from the Grassmann
variables ϑ1, ϑ2, ϑ

1
, ϑ

2
by means of a coordinate transformation[4]. The integrals

∮
P

and
∮
A

denote periodic

conditions x(0) = x(T ) for the real integral and antiperiodic conditions ψ(0) = −ψ(T ) for the Grassmann
integral. This periodicity and antiperiodicity results from the symmetric and antisymmetric form of the diagonal
elements in (4.11).

4We denote ϑ := (ϑ1, ϑ2) and ϑ := (ϑ1, ϑ
2
).

5Note the representation of the unity

1 = i

Z
d4x dϑ1 dϑ2 |x,ϑ〉 〈x,ϑ| . (4.12)
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4.2 N-point functions

With the effective action (4.13) at hand, we are now ready to look at the one-loop contributions to the 1PI-N -
point functions, namely

Γ1l, µ1..µN
N (x1, ..,xN ) :=

δΓ1l

δAµ1(x1)..δAµN (xN )

∣∣∣∣
A=0

=
i

2
(ie)N

∞∫
0

dT

T
e−m

2T

∮
P

Dx
∮
A

Dψ e
−
TR
0
dτ

h
ẋ2
4 + 1

2ψψ̇
i

×
N∏
k=1

[
ẋµk(x(τk))− 2ψµψµk∂µ

]
δ(x(τk))− xk) . (4.15)

Performing a Fourier-transformation of (4.15) yields

Γ̃1l,µ1,..,µN
N (p1, ..,pN ) =

i

2
(ie)N

(2π)DN/2

∞∫
0

dT

T
e−m

2T

∮
P

Dx e
−
TR
0

ẋ2
4 dτ

∮
A

Dψ e
−
TR
0

dτ
2 ψψ̇

×
N∏
k=1

T∫
0

dτk
[
ẋµk(τk)︸ ︷︷ ︸

=:x
µk
k

+2i(ψµk(τk)︸ ︷︷ ︸
=:ψ

µk
k

)(pkψ(τk))
]
· eip

kx(τk) , (4.16)

whereas we formally replaced 4 → D, preparing for dimensional regularization. Note that Γ̃1l,µ1..,µN
N is a

contravariant tensor field. Its behavior is thus characterized by how it acts on arbitrary covectors ε1, .., εN and
it suffices to determine the contractions

ε1
µ1
. . . εNµN Γ̃µ1..µN

N (p1, ..,pn) . (4.17)

Now to further evaluate (4.16), or (4.17) for that matter, it would be useful to express the integrand purely as
an exponential. We therefore introduce the Grassmann variables6 ϑk, ϑk and write[11]

εkẋk + 2i(εkψk)(pkψk) =
∫
dϑkdϑk exp

[
ϑkϑk(εkẋk) +

√
2ϑk(εkψk) +

√
2iϑk(pkψk)

]
. (4.18)

Evaluating the resulting path integrals finally yields

ε1
µ1
. . . εNµN Γ̃µ1..µN

N (p1, ..,pn) =i
2π

D
2 (ie)N

(2π)DN/2
· δ

[
N∑
k=1

pk
]
·
∞∫

0

dT

T 1+D
2
e−m

2T
N∏
j=1

 T∫
0

dτj

∫
dϑjdϑj



exp

[
1
2

N∑
k,l=1

[
pkpl − 2iϑlϑlεlpk∂1 + ϑkϑkϑlϑlε

kεl∂2
1

]
GB(τk, τl)

]

× exp

1
2

N∑
k,l=1

[
ϑkϑlpkpl − ϑkϑlεkεl − 2iϑkϑlpkεl

]
GF (τk, τl)

 . (4.19)

One should not be irritated by the fact that the εk, as arguments of a multilinear form on the left hand side,
appear in an exponent on the right hand side of (4.19). Due to the Grassmann numbers included, only terms
of linear order eventually remain.

6Using the convention
R

dϑk dϑk ϑkϑk = 1.
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The GB & GF are the Green’s functions for the differential operators 2 d2

dτ2 & 2 d
dτ , acting on functions on the

interval [0, T ], with periodic & antiperiodic boundary conditions respectively7. They have the form:

GB(τ1, τ2) = |τ1 − τ2| −
(τ1 − τ2)2

T
,

GF (τ1, τ2) = sgn(τ1 − τ2) . (4.20)

It should be noted that the classical action term in (4.3), depends only linearly on the gauge field A. Thus,
the one-loop contribution (4.19) to any 1PI-N -point function, is for N ≥ 2 exactly that 1PI-N -point function.
Having now at hand an integral expression for the 1PI-N -point functions, we can proceed to looking more
carefully at one important special case.

4.3 The vacuum polarization tensor

One important special case of N -point function, is the so-called polarization tensor, appearing as a second order
expansion term in the S matrix of interacting QED. It is defined as[10]

i

4π
Πµν(x,y) := (ie)2 · ψ̂(x)γµψ̂(x)ψ̂(y)γνψ̂(y) (4.21)

and corresponds to the interaction of a propagating photon with the vacuum, by means of electron/positron
creation and annihilation. The perturbed photon propagator reads[17]

iDint
F,κλ(x,y) := 〈0|T

[
Âκ(x)SÂλ(y)

]
|0〉

= iDF,κλ(x,y) +
[
iDF,κµ ∗

iΠµν

4π
∗ iDF,νλ

]
(x,y) + (. . . ) (4.22)

with

iDF,κλ(x,y) := 〈0|T
[
Âκ(x)Âλ(y)

]
|0〉 (4.23)

as free photon propagator. The vacuum polarization term corresponds to the Feynman diagram (4.1) and is of
1st order in the fine-structure constant α := e2

4π .

µ ν
x y

Figure 4.1: Vacuum polarization diagram in QED.

It can be shown that the polarization tensor is given by the 2-point function[4]

Γ̃µν2 (p1,p2) = (2π)
D
2 · δ(p1 + p2) · Π̃µν(p1) . (4.24)

This special structure for the 1PI-2-point function Γ̃µν2 is in total accordance with expression (4.19), actually re-
sulting from the fact that Γµν2 depends only on the difference of its arguments! The evaluation of the Grassmann
integrals in (4.19) is straightforward and results in

Π̃µν(p) = − i

(2π)
D
2

8e2

(4π)
D
2
·
[
δµαpαδ

νβpβ − (p)2δµν
]
· Γ
(
2− D

2

)
·

1∫
0

du u(1− u)
[
m2 + (p)2u(1− u)

]D
2 −2

.

(4.25)

7Actually 2 d2

dτ2 acting on the equivalence classes of paths, with respect to the equivalence relation y ∼ z :⇔ (y − z) = const.
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Note that this result is still in Euclidean form: Rotating back to Minkowskian, one obtains

Π̃µν
M (p) =

1

(2π)
D
2

8e2

(4π)
D
2
· [pµpν − g(p,p) · gµν ] · Γ

(
2− D

2

)
·

1∫
0

du u(1− u)
[
m2 − g(p,p)u(1− u)

]D
2 −2

.

(4.26)

The same result one obtains, when directly calculating the vacuum polarization contribution to the QED S
matrix, using Wicks theorem in its Dyson expansion[17]. Observe that this expression is divergent for D → 4
and needs to be handled by means of renormalization.
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