Physics of Planetary Systems - Exercises

Astrophysikalisches Institut und Universitätssternwarte Jena Thüringer Landessternwarte Tautenburg

2009-06-11

Solutions to Set 6

Problem 6.1

Advantages:

- No bias for nearby stars or planets around solar-type stars.
- Sensitive to Earth-mass planets using ground-based observations: one of few methods that can do this.
- Most sensitive for planets in the "lensing zone", $0.6<a<2$ AU for stars in the bulge. This is the habitable zone.
- Multiple systems can be detected at the same time.
- Detection of free-floating planets possible.
- Can get good statistics on Earth mass planets in the habitable zone of stars.

Disadvantages:

- Probability of lensing events small.
- One time event, no possibility to confirm, or improve measurements.
- Duration of events is hours to days. Need coordinated observations from many observatories.
- Planets are distant: so, no detailed studies of the planet are possible.
- Planet hosting star is distant: detailed studies of the host star very dfficult.
- Precise orbital parameters of the planet not possible.
- Light curves are complex: only one crossing of the caustic. No unique solution and often a non-planet can also model the light curves.

Problem 6.2

We first need to compute the Einstein Radius, θ_{E},

$$
\theta_{\mathrm{E}}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{\mathrm{LS}}}{D_{\mathrm{L}} D_{\mathrm{S}}}}
$$

We then need to calculate the magnification from:

$$
\mu=\frac{u^{2}+2}{u \sqrt{u^{2}+4}}
$$

where u is defined as $u \equiv \beta / \theta_{\mathrm{E}}$, and β is the impact parameter in radians. The duration of the event is given by

$$
t=\frac{R_{\mathrm{E}}}{v}
$$

with R_{E} being the the projected Einstein Radius. The involved distances are $D_{\mathrm{L}}=2 \mathrm{kpc}, D_{\mathrm{S}}=10 \mathrm{kpc}$, $D_{\mathrm{LS}}=8 \mathrm{kpc}$.
a) Assuming $M=1 M \odot$, we obtain $\theta_{\mathrm{E}}=8.77 \times 10^{-9} \mathrm{rad}=0.00181^{\prime \prime}=1.81 \mathrm{mas}, u=0.01 / 1.81=$ 0.00552 , and thus, $\underline{\mu=181}$. With $R_{\mathrm{E}}=\theta_{\mathrm{E}} D_{\mathrm{L}}=5.4 \times 10^{13} \mathrm{~cm}$ and an assumed velocity $v \approx 200 \mathrm{~km} / \mathrm{s}$, the transit duration is $t=31.2 \mathrm{~d}$.
b) $\quad M=1 M_{\text {Jup }}$ leads to: $\theta_{\mathrm{E}}=2.7 \times 10^{-10} \mathrm{rad}=0.56 \mathrm{mas}, u=0.01 / 0.56=0.18, \underline{\mu=5.63}, R_{\mathrm{E}}=1.66 \times$ $10^{12} \mathrm{~cm}, t=23.1 \mathrm{~h}$.
c) $\quad M=1 M_{\oplus}$ leads to: $\theta_{\mathrm{E}}=1.5 \times 10^{-11} \mathrm{rad}=0.00314$ mas, $u=0.01 / 0.00314=3.18, \underline{\mu=1.01,} R_{\mathrm{E}}=$ $9.24 \times 10^{10} \mathrm{~cm}, \underline{t=4.6 \mathrm{~h}}$.

Problem 6.3

The gas drag force (as usual, in the Epstein regime) is given by

$$
F_{\mathrm{gas}}=\frac{4}{3} \rho c_{\mathrm{s}} \sigma v
$$

where $\sigma=\pi s^{2}$, and v is the relative velocity of the planetesimal with respect to gas:

$$
v=\eta v_{\mathrm{K}}, \quad \eta \approx \frac{c_{\mathrm{s}}^{2}}{v_{\mathrm{K}}^{2}}
$$

The velocities c_{S} and v_{K} were already calculated in a previous problem:
$c_{\mathrm{S}} \approx 2 \mathrm{kms}^{-1}$ and $v_{\mathrm{K}} \approx 30 \mathrm{kms}^{-1}$, so that $\eta \approx(2 / 30)^{2} \approx 1 / 200$.
Substituting other numerical values (in CGS!) results in

$$
F_{\mathrm{gas}} \approx \frac{4}{3} \cdot 10^{-9} \cdot 2 \cdot 10^{5} \cdot\left(3 s^{2}\right) \cdot 30 \cdot 10^{5} \cdot\left(\frac{1}{200}\right) \approx 8 \cdot 10^{-4} s^{2} \cdot 1.5 \cdot 10^{4} \approx 10 s^{2}
$$

The mutual gravitational force acting upon two planetesimals with radius s is strongest "at contact" and then given by

$$
F_{\mathrm{grav}}=\frac{G m^{2}}{(2 s)^{2}}=\frac{G}{(2 s)^{2}}\left(\frac{4}{3} \pi \rho_{\mathrm{plan}} s^{3}\right)^{2} \approx \frac{G}{4 s^{2}}\left(4 \rho_{\mathrm{plan}} s^{3}\right)^{2} \approx 4 G \rho_{\mathrm{plan}}^{2} s^{4}
$$

or, numerically, assuming $\rho_{\text {plan }} \approx 2$,

$$
F_{\mathrm{grav}} \approx 4 \cdot 7 \cdot 10^{-8} \cdot 4 s^{4} \approx 10^{-6} s^{4}
$$

Equating $F_{\text {gas }}$ and $F_{\text {grav }}$ leads to

$$
10 s^{2}=10^{-6} s^{4}
$$

or

$$
s=3 \cdot 10^{3} \mathrm{~cm}=30 \mathrm{~m}
$$

Therefore, gravity seems to be important already at sizes $\ll 1 \mathrm{~km}$, but: gas drag acts permanently, whereas mutual gravity only during (short-lasting) close encounters.
What is more, the case where two like-sized bodies stick together is very rare. Typically smaller objects stick to a bigger one, in which case the acceleration due to gas drag is stronger. We can, for example, calculate how big the big object had to be, in order to bind a small object with a radius of one meter to its surface:

$$
F_{\mathrm{grav}}=\frac{G m_{\mathrm{big}} m_{\mathrm{small}}}{s_{\mathrm{big}}^{2}}=\frac{4}{3} \rho_{\mathrm{gas}} c_{\mathrm{s}} \sigma_{\mathrm{small}} v=F_{\mathrm{gas}}
$$

Again, with $\sigma_{\text {small }}=\pi s_{\text {small }}^{2}$ and $m=\frac{4}{3} \pi \rho_{\text {plan }} s^{3}$, we find

$$
s_{\mathrm{big}}=\frac{3 c_{\mathrm{s}} v \rho_{\mathrm{gas}}}{4 \pi \rho_{\mathrm{plan}}^{2} G s_{\mathrm{small}}} \approx 260 \mathrm{~m}
$$

This value is already higher by an order of magnitude.

Problem 6.4

Rebounds are possible if the typical velocity of fragments v is less than the escape velocity of the debris cloud emerged after the collision of two planetesimals of radius s. Roughly,

$$
v<v_{\mathrm{esc}} \sim \sqrt{\frac{2 G m}{s}} \sim \sqrt{\frac{2 G(4 / 3) \pi \rho_{\text {plan }} s^{3}}{s}} \sim \sqrt{8 G \rho_{\text {plan }} s}
$$

whence

$$
s>\frac{v}{\sqrt{8 G \rho_{\text {plan }}}} \sim \frac{10^{3}}{\sqrt{8 \cdot 7 \cdot 10^{-8} \cdot 2}} \sim \frac{10^{3}}{\sqrt{10^{-6}}} \sim 10^{6} \mathrm{~cm} \sim 10 \mathrm{~km}
$$

Problem 6.5

Let a grain move through an ensemble of background grains with a volume number density n_{0}. Assuming a collision cross section $\sigma=\pi\left(s+s_{0}\right)^{2}$ with object radii s and s_{0}, the chance that the grain hits a background grain while it moves a certain distance $\mathrm{d} x$ is given by

$$
\mathrm{d} P=n_{0} \sigma \mathrm{~d} x
$$

where the expression $n_{0} \sigma$ can be considered a "cross section density". (The integral version for the probability that it can travel a distance x is $P(x)=\mathrm{e}^{-x n_{0} \sigma}$.) Thus the mean free path λ_{0} is defined through

$$
n_{0} \sigma \lambda_{0} \stackrel{!}{1} 1
$$

And with $s=s_{0}=1 \mu \mathrm{~m}$ and $n_{0}=10^{9} \mathrm{~m}^{-3}$, we find

$$
\lambda_{0} \approx 80 \mathrm{~m}
$$

On the other hand, the rate of collisions, R , depends on the velocity at which the object moves through the others:

$$
\mathrm{R}=n \sigma v_{\mathrm{rel}}=\frac{v_{\mathrm{rel}}}{\lambda} .
$$

($v=\mathrm{d} x / \mathrm{s} t$). Using $v_{\mathrm{rel}}=0.001 \mathrm{~m} \mathrm{~s}^{-1}$ and $\lambda=\lambda_{0}=80 \mathrm{~m}$, this rate is $\mathrm{R}_{0} \approx 1$ per day (for collisions between $1-\mu \mathrm{m}$-sized grains).
In order to consider growth, we need to put more effort in the expression for σ and assume that $s>s_{0}=1 \mu \mathrm{~m}$. The accretion of one background grain onto our growing grain leads to a straight-forward increase of its mass by that of the background grain:

$$
m^{\prime}=m+m_{0}
$$

and

$$
\mathrm{d} m=m_{0} \operatorname{Rd} t=m_{0} n_{0} \sigma v_{\text {rel }} \mathrm{d} t=m_{0} n_{0} \pi\left(s+s_{0}\right)^{2} v_{\text {rel }} \mathrm{d} t
$$

In contrast, the behavior of an objects size depends on its dimensionality: $m \propto s^{D}$ or

$$
m=m_{0}\left(\frac{s}{s_{0}}\right)^{D}
$$

Therefore,

$$
\mathrm{d} m=D \frac{m_{0}}{s_{0}}\left(\frac{s}{s_{0}}\right)^{D-1} \mathrm{~d} s
$$

which leads to

$$
\frac{D}{s_{0}}\left(\frac{s}{s_{0}}\right)^{D-1} \mathrm{~d} s=n_{0} \pi\left(s+s_{0}\right)^{2} v_{\mathrm{rel}} \mathrm{~d} t
$$

Assuming that, most of the time, $s \gg s_{0}$, we can simplify the equation to

$$
\frac{D}{s_{0}^{3}}\left(\frac{s}{s_{0}}\right)^{D-3} \mathrm{~d} s=n_{0} \pi v_{\mathrm{rel}} \mathrm{~d} t
$$

and find (when integrating s from s_{0} to $s_{\max }$)

$$
\left.\Delta t\right|_{D=3}=\frac{D}{D-2} \frac{1}{\pi s_{0}^{2} n_{0} v_{\mathrm{rel}}}\left[\left(\frac{s_{\mathrm{max}}}{s_{0}}\right)^{D-2}-1\right]=\frac{D}{D-2} \frac{4}{\mathrm{R}_{0}}\left[\left(\frac{s_{\mathrm{max}}}{s_{0}}\right)^{D-2}-1\right]
$$

With $s_{\max } / s_{0}=1000, \mathrm{R}_{0}^{-1} \approx 1$ day, and $D=3$, the result is

$$
\left.\Delta t\right|_{D=3} \approx \frac{12}{\mathrm{R}_{0}} \frac{s_{\mathrm{max}}}{s_{0}} \approx 12000 \text { days } \approx 30 \mathrm{yr}
$$

For $D=2$, we can either convince ourselves that

$$
\frac{1}{D-2}\left[\left(\frac{s_{\max }}{s_{0}}\right)^{D-2}-1\right] \xrightarrow{D \rightarrow 2} \ln \left(\frac{s_{\max }}{s_{0}}\right)
$$

or re-do the integral over s. In either case, one obtains

$$
\left.\Delta t\right|_{D=2}=\frac{8}{\mathrm{R}_{0}} \ln \left(\frac{s_{\max }}{s_{0}}\right)
$$

and

$$
\left.\Delta t\right|_{D=2} \approx \ln 1000 \cdot 8 \text { days } \approx 60 \text { days. }
$$

As long as the relative velocities are low enough for the grains to stay porous (and to not get compactified), the growth is rather rapid.

