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Solutions to Set 6

Problem 6.1

Advantages:

• No bias for nearby stars or planets around solar-type stars.

• Sensitive to Earth-mass planets using ground-based observations: one of few methods that can do this.

• Most sensitive for planets in the “lensing zone”, 0.6 < a < 2 AU for stars in the bulge. This is the
habitable zone.

• Multiple systems can be detected at the same time.

• Detection of free-floating planets possible.

• Can get good statistics on Earth mass planets in the habitable zone of stars.

Disadvantages:

• Probability of lensing events small.

• One time event, no possibility to confirm, or improve measurements.

• Duration of events is hours to days. Need coordinated observations from many observatories.

• Planets are distant: so, no detailed studies of the planet are possible.

• Planet hosting star is distant: detailed studies of the host star very dfficult.

• Precise orbital parameters of the planet not possible.

• Light curves are complex: only one crossing of the caustic.No unique solution and often a non-planet
can also model the light curves.

Problem 6.2

We first need to compute the Einstein Radius,θE,

θE =

√

4GM
c2

DLS

DLDS

We then need to calculate the magnification from:

µ =
u2 +2

u
√

u2 +4
,
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whereu is defined asu ≡ β/θE, andβ is the impact parameter in radians. The duration of the eventis given
by

t =
RE

v
,

with RE being the the projected Einstein Radius. The involved distances areDL = 2 kpc, DS = 10 kpc,
DLS = 8 kpc.

a) AssumingM = 1 M⊙, we obtainθE = 8.77× 10−9 rad= 0.00181′′ = 1.81 mas,u = 0.01/1.81 =
0.00552, and thus,µ = 181. With RE = θEDL = 5.4×1013 cm and an assumed velocityv ≈ 200 km/s, the
transit duration ist = 31.2 d.

b) M = 1 MJup leads to:θE = 2.7×10−10 rad= 0.56 mas,u = 0.01/0.56= 0.18, µ = 5.63, RE = 1.66×
1012 cm, t = 23.1 h.

c) M = 1 M⊕ leads to:θE = 1.5×10−11 rad= 0.00314 mas,u = 0.01/0.00314= 3.18, µ = 1.01, RE =

9.24×1010 cm, t = 4.6 h.

Problem 6.3

The gas drag force (as usual, in the Epstein regime) is given by

Fgas=
4
3

ρcsσv

whereσ = πs2, andv is the relative velocity of the planetesimal with respect togas:

v = ηvK , η ≈ c2
s

v2
K

The velocitiescs andvK were already calculated in a previous problem:
cs ≈ 2kms−1 andvK ≈ 30kms−1, so thatη ≈ (2/30)2 ≈ 1/200.
Substituting other numerical values (in CGS!) results in

Fgas≈
4
3
·10−9 ·2·105 · (3s2) ·30·105 ·

(

1
200

)

≈ 8·10−4s2 ·1.5·104 ≈ 10s2.

The mutual gravitational force acting upon two planetesimals with radiuss is strongest “at contact” and then
given by

Fgrav =
Gm2

(2s)2 =
G

(2s)2

(

4
3

πρplans
3
)2

≈ G
4s2

(

4ρplans
3)2 ≈ 4Gρ2

plans
4

or, numerically, assumingρplan≈ 2,

Fgrav≈ 4·7·10−8 ·4s4 ≈ 10−6s4.

EquatingFgasandFgrav leads to
10s2 = 10−6s4

or
s = 3·103 cm= 30 m.

Therefore, gravity seems to be important already at sizes≪ 1 km, but: gas drag acts permanently, whereas
mutual gravity only during (short-lasting) close encounters.
What is more, the case where two like-sized bodies stick together is very rare. Typically smaller objects stick
to a bigger one, in which case the acceleration due to gas dragis stronger. We can, for example, calculate
how big the big object had to be, in order to bind a small objectwith a radius of one meter to its surface:

Fgrav =
Gmbigmsmall

s2
big

=
4
3

ρgascsσsmallv = Fgas.
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Again, withσsmall = πs2
small andm = 4

3πρplans3, we find

sbig =
3csvρgas

4πρ2
planGssmall

≈ 260 m.

This value is already higher by an order of magnitude.

Problem 6.4

Rebounds are possible if the typical velocity of fragmentsv is less than the escape velocity of the debris
cloud emerged after the collision of two planetesimals of radiuss. Roughly,

v < vesc∼
√

2Gm
s

∼
√

2G(4/3)πρplans3

s
∼

√

8Gρplans

whence

s >
v

√

8Gρplan
∼ 103

√
8·7·10−8 ·2

∼ 103
√

10−6
∼ 106cm∼ 10km.

Problem 6.5

Let a grain move through an ensemble of background grains with a volume number densityn0. Assuming a
collision cross sectionσ = π(s+ s0)

2 with object radiis ands0, the chance that the grain hits a background
grain while it moves a certain distance dx is given by

dP = n0σdx,

where the expressionn0σ can be considered a “cross section density”. (The integral version for the proba-
bility that it can travel a distancex is P(x) = e−xn0σ .) Thus the mean free pathλ0 is defined through

n0σλ0
!
=1.

And with s = s0 = 1 µm andn0 = 109 m−3, we find

λ0 ≈ 80 m.

On the other hand, therate of collisions, R, depends on the velocity at which the object moves through the
others:

R = nσvrel =
vrel

λ
.

(v = dx/st). Usingvrel = 0.001 m s−1 andλ = λ0 = 80 m, this rate isR0 ≈ 1 per day (for collisions between
1-µm-sized grains).
In order to consider growth, we need to put more effort in the expression forσ and assume thats > s0 = 1 µm.
The accretion of one background grain onto our growing grainleads to a straight-forward increase of its mass
by that of the background grain:

m′ = m + m0

and
dm = m0Rdt = m0n0σvreldt = m0n0π(s+ s0)

2vreldt.

In contrast, the behavior of an objectssizedepends on its dimensionality:m ∝ sD or

m = m0

(

s
s0

)D

.

Therefore,

dm = D
m0

s0

(

s
s0

)D−1

ds
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which leads to
D
s0

(

s
s0

)D−1

ds = n0π(s+ s0)
2vreldt.

Assuming that, most of the time,s ≫ s0, we can simplify the equation to

D

s3
0

(

s
s0

)D−3

ds = n0πvreldt

and find (when integratings from s0 to smax)

∆t|D=3 =
D

D−2
1

πs2
0n0vrel

[

(

smax

s0

)D−2

−1

]

=
D

D−2
4
R0

[

(

smax

s0

)D−2

−1

]

With smax/s0 = 1000,R−1
0 ≈ 1 day, andD = 3, the result is

∆t|D=3 ≈
12
R0

smax

s0
≈ 12000 days≈ 30 yr.

ForD = 2, we can either convince ourselves that

1
D−2

[

(

smax

s0

)D−2

−1

]

D→2−→ ln

(

smax

s0

)

or re-do the integral overs. In either case, one obtains

∆t|D=2 =
8
R0

ln

(

smax

s0

)

and
∆t|D=2 ≈ ln1000·8 days≈ 60 days.

As long as the relative velocities are low enough for the grains to stay porous (and to not get compactified),
the growth is rather rapid.
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