Physics of Planetary Systems - Exercises

Astrophysikalisches Institut und Universitätssternwarte Jena Thüringer Landessternwarte Tautenburg

2009-06-04

Solutions to Set 5

Problem 5.1

The astrometric amplitude is given by

$$
\theta=\frac{M_{\text {planet }}}{M_{*}} \frac{a}{D},
$$

where $M_{\text {planet }}$ is the mass of the planet, M_{*} the stellar mass, a the orbital semi-major axis, and D the stellar distance. Again the students have to calculate a based on the M_{*} and the period P. The result is $a=1.18$ AU . So the astrometric amplitude is $\theta=\frac{7.4 \times 0.001 M_{\odot}}{1.23 M_{\odot}} \cdot \frac{1.18 .1 .5 \times 10^{13} \mathrm{~cm}}{38.53 .086 \times 10^{18} \mathrm{~cm}}=0.90 \times 10^{-9}$ radians. We need to convert this to a more interesting unit, i.e. milli-arcseconds. With $1 \mathrm{rad}=180^{\circ} / \pi=648000^{\prime \prime} / \pi$, we end up with an astrometric perturbation

$$
\theta=0.00018^{\prime \prime}=0.18 \mathrm{mas} .
$$

In other words, astrometry should be able to confirm this planet.

Problem 5.3

The incoming energy per unit time is the cross-section area of a spherical grain times the flux of stellar radiation at a distance r :

$$
\pi s^{2} \cdot \frac{L_{*}}{4 \pi r^{2}}
$$

or, using the Stefa-Boltzmann equation:

$$
\pi s^{2} \cdot \frac{\sigma T_{*}^{4} R_{*}^{2}}{r^{2}}
$$

The outgoing energy per unit time is related to the particle's total surface area:

$$
4 \pi s^{2} \cdot \sigma T_{\text {dust }}^{4}
$$

In equilibrium both are equal:

$$
\pi s^{2} \cdot \frac{\sigma T_{*}^{4} R_{*}^{2}}{r^{2}}=4 \pi s^{2} \cdot \sigma T_{\text {dust }}^{4}
$$

so that

$$
r=\frac{R_{*}}{2}\left(\frac{T_{*}}{T_{\text {dust }}}\right)^{2}
$$

or

$$
T_{\mathrm{dust}}=T_{*} \sqrt{\frac{R_{*}}{2 r}} .
$$

At the distance of the Earth, we find

$$
T_{\mathrm{dust}}=T_{\odot} \sqrt{\frac{R_{\odot}}{2 r}} \approx 290 \mathrm{~K} .
$$

Using $R_{*}=R_{\odot}$ and $T_{\text {dust }}=1500 \mathrm{~K}$, the sublimation distance is then given by

$$
r \approx 8 R_{\odot}
$$

Problem 5.2

In class, the expression

$$
\begin{equation*}
T_{\text {planet }}=T_{*}\left(\frac{R_{*}}{d}\right)^{1 / 2}\left(\frac{1-A}{4}\right)^{1 / 4} \tag{1}
\end{equation*}
$$

was derived equating incoming flux in and outgoing flux. A is the albedo, d is the distance of the planet and R_{*} the radius of the star. Note: this is for a redistribution of heat, i.e. the absorbed flux of the planet gets re-radiated in 4π steradians. For the albedo, we need to find a reasonable value. Some examples are: Jupiter with $A=0.52$ and Earth with $A=0.37$. The expectation for hot Jupiters is $A=0.1$.

The orbital distance, d, can be calculated using Newton's form of Keplers law which depends on the stellar mass:

$$
\left(\frac{P}{1 \mathrm{yr}}\right)^{2}=\frac{M_{\odot}}{M_{*}}\left(\frac{a}{1 \mathrm{AU}}\right)^{2},
$$

resulting in $d=a=0.032 \mathrm{AU}=4.8 \times 10^{11} \mathrm{~cm}$. Assuming $A=0.1$, we get an equilibrium temperature

$$
T_{\text {planet }}=1920 \mathrm{~K} .
$$

If you assume that the planet is tidally locked and that it re-radiates in only 2π steradians, 4 becomes 2 in the equation 1 and

$$
T_{\text {planet }}^{\prime}=2282 \mathrm{~K} .
$$

Problem 5.4

From

$$
\Gamma=\frac{\rho}{\rho_{\text {dust }}} \frac{c_{\mathrm{s}}}{s}
$$

and the boundary condition

$$
\Gamma=2 \Omega_{\mathrm{K}},
$$

we find

$$
s=\frac{\rho}{\rho_{\text {dust }}} \frac{c_{\mathrm{s}}}{2 \Omega_{\mathrm{K}}}
$$

The sound speed was estimated in one of the previous problems: at $1 \mathrm{AU}, c_{s} \sim 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$. For the Kepler frequency we can assume $\Omega_{\mathrm{K}}=\frac{2 \pi}{1 \mathrm{yr}}=\frac{2 \pi}{3 \times 10^{7} \mathrm{~s}}$, and for the dust density $\rho_{\text {dust }}=1 \mathrm{~g} \mathrm{~cm}^{-3}=1000 \mathrm{~kg} \mathrm{~m}^{-3}$. Then,

$$
s \sim 2.5 \mathrm{~m} .
$$

Therefore, the boundary is at meter-sized bodies.

Problem 5.5

The acceleration due to gas drag force is proportional to σ / m (the ratio of cross section and mass) and therefore to $1 / \mathrm{s}$. Thus, the smaller the bodies, the stronger the headwind they experience. But this is true only down to a certain size. Yet smaller particles become more and more strongly coupled with gas, their relative velocity with respect to gas tends to zero, and so does the radial velocity.

