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Solutions to Set 4

Problem 4.1

This figure appeared in Dreizler et al. 2003, A&A, 402, 791. This paper should have been rejected
by the referee. One should of course be critical that within the errors one can also fit a straight line
through all data points. The RV measurements are consistentwith no variations. However, the proof
against the planet is in the phase. Photometric phase 0 is at transit center. At this phase the star is behind
the planet and moving transversely to the observers left (0 radial velocity). After this phase, the star
should start moving towards the observer. This is a blue shift in wavelength and by definition should be
a negative radial velocity after phase 0. But the radial velocity curve for this star is 180 degrees out of
phase from that expected for a transiting planet. This is impossible, so the RV data do not support the
planet hypothesis and the paper and press release should have never been published.

Problem 4.2

Assuming a circular orbit, you can derive everything trivially from Kepler’s law, or you can use the
expression given in class,
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whereM∗ is the stellar mass,P the planet’s period,τ the transit duration, andR∗ the resulting stellar
radius. (We neglect the radius of the planet for now.) Reading off the graph, the transit duration is
approximately 0.04 d= 3456 s= 0.96 h. AssumingM∗ = M⊙, one getsR∗ = 0.38R⊙, a radius consistent
with an M dwarf.

One can refine the radius by assuming that the stellar mass is now M∗ = 0.4 M⊙, more appropriate for
an M dwarf. In that case, the resulting stellar radius isR∗ = 0.28 R⊙

Of course the short transit time can be due to a grazing transit, that does not go across the disk center,
but the transit curve looks flat bottom which argues against this. So, most likely this is an M dwarf star,
based on the transit duration.

If you want to include the radius of the planet. The transit depth is 0.005 which implies anRplanet=
0.02R∗ (or 0.07 R⊙, usingR∗ = 0.28 R⊙). The Keplerian velocity of the planet is (using Keplers law
andM∗ = 0.4 M⊙) is 114.3 km/s. Since the transit time duration (first contact to last contact) is given by
(2R∗ + 2Rplanet)/v (with v = 114.3 km/s), this corrects the stellar radius byRplanet/R∗ = 2%. Thus we
can safely ignore the radius of the planet.

Problem 4.3

The protostar luminosity caused by accretion of matter ontoit, the so-calledaccretion luminosity, is
obviously given by

L =
GM⋆Ṁ

R⋆
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whereṀ is the accretion rate,M⋆ and R⋆ the mass and the radius of the protostar. This equation is
based on the assumption that the material transforms potential energy into kinetic energy during the
approach and then into thermal energy and emission on impact. Assuming the solar mass and radius, and
expressing the result in units of the “present-day” luminosity of the Sun,L⊙, we have

L
L⊙

=
GM⊙Ṁ
L⊙R⊙

=
7·10−11 m3 kg−1 s−2

·2·1030 kg·
[

10−5
·2·1030 kg /(3·107 s)

]

4·1026 W ·7·108 m
≈ 300

– a very high value!
The according Temperature at the solar surface can be estimated through the known relationship, valid

for black-body radiation:T ∝ L1/4R−1/2. For accretion onto the solar surface, we find

T ≈ (L/L⊙)1/4
·T⊙ ≈ 3001/4

·5800 K≈ 24000 K.

Assuming accretion/collapse onto a protostellar central cloud of larger extent, say 0.1 AU, we find

T ≈ (L/L⊙)1/4 (0.1 AU/R⊙)−1/2
·T⊙ ≈ 5000 K.

Problem 4.4

Giant planets can form directly, when the disk is gravitationally unstable. The Toomre instability criterion
reads

Q ≡
h
r
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Using the formula for the scale height,h = cs/ΩK or h/r = cs/vK , we rewrite the criterion as
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For the sound velocity we have
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Here, the Keplerian circular velocity is given byvK =
√

GM∗/r. AssumingM∗ = M⊙, we obtainvK =
30 km s−1 = 3·104 m s−1 at r = 1AU. With Mdisk

M∗
= 0.01 andµ = 2 (molecular hydrogen), the instability

criterion is

T < 4·10−4 2·1.7·10−27 kg

1.4·10−23 J K−1 · (3·104)2
∼ 100 K,

which is too cold! At Saturn’s distance of 10AU, the requiredtemperature is as low as 10K, which is
absolutely unrealistic. But forMdisk

M∗

∼ 0.1 instead of 0.01 the critical temperature grows by two orders of
magnitude, reaching reasonable values.
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