Physics of Planetary Systems — Exercises

Astrophysikalisches Institut und Universitätssternwarte Jena Thüringer Landessternwarte Tautenburg

Distributed: 2009-05-06; results due: 2009-05-13.

Set 3

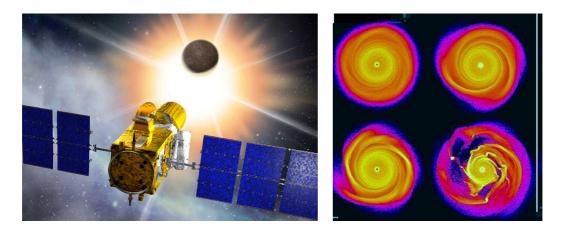
Problem 3.1

Describe 3 sources of "False Positives" (i.e. a transit-like event seen in photometry that turns out not to be a planet) and what observations you can make to prove that these are not really transiting planets. (2 points)

Problem 3.2

Assume that you have the photometric precision to detect a transit depth of 1%. What is the earliest spectral type for which you can detect a hot Jupiter exoplanet with a radius of 1 $R_{Jupiter}$ orbiting around a main sequence star? (Use the relation between spectral type and stellar radius.) (2 points)

Problem 3.3


Calculate the transit probability, photometric amplitude, and transit duration for (a) Neptune in a circular orbit at 0.1 AU from a solar-type star and (b) a G2V star in a circular orbit at 2 AU from a K0III giant (like Pollux). (2 extra points)

Problem 3.4

One of the assumptions in the classical theory of viscous accretion disks is that the sound speed is much smaller than the Keplerian velocity. Check this assumption with a direct estimate. (2 points)

Problem 3.5

Find *all* possible power-law stationary solutions for surface density Σ , temperature *T*, and viscosity *v* of accretion disks. Which of them are physical and which are not? Plot a couple of solutions. (*3 points*)

Figure 1: (*Left*) Artist's impression of the CoRoT space telescope (http://corot.de). (*Right*) Snapshot of a simulation showing a gravitationally unstable disk (Mayer et al., 2003).