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Solutions to Set 3

Problem 3.1

Here comes a list of four possible sources of false positives.

• Grazing eclipse by a binary: can easily be distinguished with radial velocity measurements which
would show an amplitude of several tens of km/s instead of hundreds of m/s.

• Transit of a main sequence star across a giant. A spectra of the host star should reveal it is a giant.
Plus the transit duration will be too long. A transit across agiant star can take many tens of hours
to days.

• Eclipsing binary in background diluted by the light of a bright foreground object. This is difficult
to resolve with radial velocity measurements. Probably need very high resolution imaging, or
spectra in the infrared.

• Hierarchical binary, i.e. an eclipsing binary in orbit around a brighter star. High resolution imaging
is needed to resolve system, or infrared measurements. Depending on the orbital period of the
binary about the main star, one could see a radial velocity trend due to a binary star.

Problem 3.2

The condition to be met is
(

Rplanet

Rstar

)2

= 1%,

from which we find

Rstar=
Rplanet√

1%
= 10Rplanet.

Since we mistakenly asked for 1% photometric amplitude (instead of 0.1% as planned) andRplanet=
1 RJup, we obtain

Rstar= 10 RJup= 1 Rsun.

So, we end up with a star of solar radius and, thus, a G2 star.

Problem 3.3

(a) The transit probability is justp = Rstar/a. With a = 0.1 AU = 21.4 Rsun andRstar= Rsun, we obtain
p = 0.046. Neptune has a radius that is 0.07 times that of the sun. The photometric amplitude is thus
0.072 = 0.005= 0.5%. In class, an expression for the transit duration was given:

τ = 2Rstar

[

P
2πGMstar

]1/3

= 1.82 hours×
Rstar

Rsun

[

P
1 day

Msun

Mstar

]1/3

,
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which can also be expressed as

τ = 2Rstar

[

a
GMstar

]1/2

= 13 hours×
Rstar

Rsun

[

a
1 AU

Msun

Mstar

]1/2

.

These expressions can be easily derived using Keplers laws and assuming circular orbits.
For calculating the transit duration, we first assume an orbital inclinationi ≈ 0 (i.e, you are looking in

the plane of the orbit) andRstar≫ Rplanet. Froma = 0.1 AU we findP = 0.032 years= 11.6 days. Thus
τ = 4.1 hours.

(b) For a start, we need to know the radius of a K0III star, which can range from 8 to 20 solar radii.
We will use an intermediate value,Rstar= 15 Rsun. Thus, the transit probability for our case is

p = Rstar/a =
15·7×1010 cm

3×1013 cm
= 0.035.

The photometric amplitude is given by

∆I
I

= (1/15)2 = 0.004,

i.e. this looks like a transiting Neptune! In order to calculate the transit duration, we need to assume a
stellar mass. Masses of giant stars are now well known and canspan 1–2Msun. Let us assume a solar
mass for the moment. Hence,a = 2 AU implies an orbital periodP = 2.82 years= 1030 days. The
transit duration is thusτ = 276 hours= 11.5 days, i.e. we now know it is not a transiting Neptune! Even
if we assumedR = 1 Rsun, we still get a transit time of 18.4 hrs. Thus the transit duration can be used to
get an estimate of how big your star is. (For the mass (1.7 Msun) and radius (9Rsun) of the K0IIIb star
Pollux, we obtainp = 0.021,∆I/I = 0.012, andτ = 127 hours= 5.3 days.)

Problem 3.4

Assuming, say, a temperature of 1000 K at 1 AU from the Sun gives the sound velocity

cs =

√

kT
µmp

∼

√

1.4·10−16 ·1000
2·1.7·10−24 ∼

√
5·1010 ∼ 2·105 ∼ 2 km s−1.

The Kepler circular velocity at the same distance from the Sun is given by

vK =
√

GM⋆/r ≈ 30 km s−1.

Obviously, at 10 or 100 AU the inequalitycs ≪ vK holds as well.

Problem 3.5

Assume power laws
c2

s ∝ T ∝ r−ξ and Σ ∝ r−η ,

so that

ν = α
c2

s

ΩK
∝ r−ξ+3/2.

Substitute these into the formula for the radial velocity

vr = −
3

Σ
√

r
∂
∂ r

(

Σν
√

r
)

to get
vr ∝ rη−1/2 · r−η−ξ+3/2+1/2−1 ∝ r−ξ+1/2

Now, the stationary continuity equation
∂ (Σrvr)

∂ r
= 0
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requiresΣrvr = const, or
r−η · r · r−ξ+1/2 = const

whence
η = −ξ +3/2.

Therefore, a general solution is

T ∝ r−ξ , ν ∝ r−ξ+3/2, Σ ∝ rξ−3/2.

To be “physical”, these solutions must have at leastξ > 0 (the farther out from the star, the colder).
On the other hand,ξ < 3/2 is a reasonable requirement (the surface density is not expected to grow
outward). These are not strict limitations though.

Plotting several of these solutions, for instance forξ = 0, 1/2, 1, and 3/2 is straightforward. Hopefully
you will not do that in linear scale... log-log is the most natural scale to plot power laws.

Addendum: To better understand the concept of viscosity, it can be insightful to study the outward
transport of angular momentum trough a viscous disk.

The dynamical viscosityη is defined through the frictional force per area (= stress tension) between
two layers spaced by a distance∆x with relative parallel velocity∆v:

F
A

= η
∆v
∆x

,

and straight-forward differential version reads

F
A

= η
dv
dx

,

where the Kepler velocity is given by,

v =

√

GM

r

the viscosity can be expressed as,
η = ρν = ραcsh,

and the contact area of the viscous layers reads

A = 2πrh.

In addition the disk’s scale heighth is given by

h =
cs

Ωk
.

HereΩk is the Keplerian angular frequency,

Ωk =

√

GM⊙

r3 ,

andcs the sound speed,

cs =

√

kT
µmp

.

What remains to be known is the local mass densityρ , which is related to the surface mass densityΣ
through

ρ(r) =
Σ(r)
h(r)

.
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Since we knowΣ ∝ r−1, we can writeΣ = Σ0r0/r and

Mdisk ≡

Rdisk
∫

0

Σ(r)2πrdr = 2πΣ0r0

Rdisk
∫

0

dr = 2πΣ0r0Rdisk,

whence we find

ρ(r) =
Mdisk

2πrhRdisk
.

Finally, the force is related to the angular momentum transfer via

L̇ = rF = rηA
dv
dx

and we find

L̇ = r(ραcsh)(2πrh)(−
1
2

√

GM

r3 )

= −παρcsh
2
√

GM r

= −πα
(

Mdisk

2πrhRdisk

)

csh
2
√

GM r

= −πα
(

Mdisk

2πrRdisk

)

c2
s

Ωk

√
GM r

= −πα
(

Mdisk

2πrRdisk

)(

kT
µmp

)

r2

= −πα
(

rMdisk

2πRdisk

)(

kT
µmp

)

.

Now, we can use standard estimates for theα parameter (∼ 10−3), the temperature (T ∼ 100 K) and
the molecular weight (µ ≈ 2). If we considerr = Rdisk for convenience, we find

L̇ ≈ 4×1031 Nm.

For the Sun, we have

L⊙ ∼
2
5

2πM⊙R2
⊙

P⊙
≈ 1×1042 Nms.

(with P ≈ 25 d = 25·86400 s). So, we can write

L̇ ≈ 4×10−11L⊙ s−1 ∼ 10−3 L⊙ yr−1.

Thus, the mechanism can transport a significant amount of angular momentum outward within a few
thousand or tens of thousands of years.
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