Physics of Planetary Systems - Exercises

Astrophysikalisches Institut und Universitätssternwarte Jena Thüringer Landessternwarte Tautenburg

2009-05-14

Solutions to Set 3

Problem 3.1

Here comes a list of four possible sources of false positives.

- Grazing eclipse by a binary: can easily be distinguished with radial velocity measurements which would show an amplitude of several tens of km / s instead of hundreds of m / s.
- Transit of a main sequence star across a giant. A spectra of the host star should reveal it is a giant. Plus the transit duration will be too long. A transit across a giant star can take many tens of hours to days.
- Eclipsing binary in background diluted by the light of a bright foreground object. This is difficult to resolve with radial velocity measurements. Probably need very high resolution imaging, or spectra in the infrared.
- Hierarchical binary, i.e. an eclipsing binary in orbit around a brighter star. High resolution imaging is needed to resolve system, or infrared measurements. Depending on the orbital period of the binary about the main star, one could see a radial velocity trend due to a binary star.

Problem 3.2

The condition to be met is

$$
\left(\frac{R_{\text {planet }}}{R_{\text {star }}}\right)^{2}=1 \%
$$

from which we find

$$
R_{\text {star }}=\frac{R_{\text {planet }}}{\sqrt{1 \%}}=10 R_{\text {planet }} .
$$

Since we mistakenly asked for 1% photometric amplitude (instead of 0.1% as planned) and $R_{\text {planet }}=$ $1 R_{\text {Jup }}$, we obtain

$$
R_{\mathrm{star}}=10 R_{\mathrm{Jup}}=1 R_{\mathrm{sun}} .
$$

So, we end up with a star of solar radius and, thus, a G2 star.

Problem 3.3

(a) The transit probability is just $p=R_{\text {star }} / a$. With $a=0.1 \mathrm{AU}=21.4 R_{\text {sun }}$ and $R_{\text {star }}=R_{\text {sun }}$, we obtain $p=0.046$. Neptune has a radius that is 0.07 times that of the sun. The photometric amplitude is thus $0.07^{2}=0.005=0.5 \%$. In class, an expression for the transit duration was given:

$$
\tau=2 R_{\mathrm{star}}\left[\frac{P}{2 \pi G \mathscr{M}_{\mathrm{star}}}\right]^{1 / 3}=1.82 \text { hours } \times \frac{R_{\mathrm{star}}}{R_{\mathrm{sun}}}\left[\frac{P}{1 \text { day }} \frac{\mathscr{M}_{\mathrm{sun}}}{\mathscr{M}_{\mathrm{star}}}\right]^{1 / 3}
$$

which can also be expressed as

$$
\tau=2 R_{\text {star }}\left[\frac{a}{G \mathscr{M _ { \mathrm { star } }}}\right]^{1 / 2}=13 \text { hours } \times \frac{R_{\mathrm{star}}}{R_{\text {sun }}}\left[\frac{a}{1 \mathrm{AU}} \frac{\mathscr{M}_{\mathrm{sun}}}{\mathscr{M}_{\mathrm{star}}}\right]^{1 / 2} .
$$

These expressions can be easily derived using Keplers laws and assuming circular orbits.
For calculating the transit duration, we first assume an orbital inclination $i \approx 0$ (i.e, you are looking in the plane of the orbit) and $R_{\text {star }} \gg R_{\text {planet }}$. From $a=0.1$ AU we find $P=0.032$ years $=11.6$ days. Thus $\tau=4.1$ hours.
(b) For a start, we need to know the radius of a K0III star, which can range from 8 to 20 solar radii. We will use an intermediate value, $R_{\text {star }}=15 R_{\text {sun }}$. Thus, the transit probability for our case is

$$
p=R_{\mathrm{star}} / a=\frac{15 \cdot 7 \times 10^{10} \mathrm{~cm}}{3 \times 10^{13} \mathrm{~cm}}=0.035
$$

The photometric amplitude is given by

$$
\frac{\Delta I}{I}=(1 / 15)^{2}=0.004
$$

i.e. this looks like a transiting Neptune! In order to calculate the transit duration, we need to assume a stellar mass. Masses of giant stars are now well known and can span 1-2 $\mathscr{M}_{\text {sun }}$. Let us assume a solar mass for the moment. Hence, $a=2 \mathrm{AU}$ implies an orbital period $P=2.82$ years $=1030$ days. The transit duration is thus $\tau=276$ hours $=11.5$ days, i.e. we now know it is not a transiting Neptune! Even if we assumed $R=1 R_{\text {sun }}$, we still get a transit time of 18.4 hrs . Thus the transit duration can be used to get an estimate of how big your star is. (For the mass ($1.7 \mathscr{M}_{\text {sun }}$) and radius ($9 R_{\text {sun }}$) of the K0IIIb star Pollux, we obtain $p=0.021, \Delta I / I=0.012$, and $\tau=127$ hours $=5.3$ days.)

Problem 3.4

Assuming, say, a temperature of 1000 K at 1 AU from the Sun gives the sound velocity

$$
c_{\mathrm{s}}=\sqrt{\frac{k T}{\mu m_{\mathrm{p}}}} \sim \sqrt{\frac{1.4 \cdot 10^{-16} \cdot 1000}{2 \cdot 1.7 \cdot 10^{-24}}} \sim \sqrt{5 \cdot 10^{10}} \sim 2 \cdot 10^{5} \sim 2 \mathrm{~km} \mathrm{~s}^{-1} .
$$

The Kepler circular velocity at the same distance from the Sun is given by

$$
v_{\mathrm{K}}=\sqrt{G \mathscr{M}_{\star} / r} \approx 30 \mathrm{~km} \mathrm{~s}^{-1} .
$$

Obviously, at 10 or 100 AU the inequality $c_{\mathrm{s}} \ll v_{\mathrm{K}}$ holds as well.

Problem 3.5

Assume power laws

$$
c_{\mathrm{s}}^{2} \propto T \propto r^{-\xi} \quad \text { and } \quad \Sigma \propto r^{-\eta},
$$

so that

$$
v=\alpha \frac{c_{\mathrm{s}}^{2}}{\Omega_{\mathrm{K}}} \propto r^{-\xi+3 / 2} .
$$

Substitute these into the formula for the radial velocity

$$
v_{r}=-\frac{3}{\Sigma \sqrt{r}} \frac{\partial}{\partial r}(\Sigma v \sqrt{r})
$$

to get

$$
v_{r} \propto r^{\eta-1 / 2} \cdot r^{-\eta-\xi+3 / 2+1 / 2-1} \propto r^{-\xi+1 / 2}
$$

Now, the stationary continuity equation

$$
\frac{\partial\left(\sum r v_{r}\right)}{\partial r}=0
$$

requires $\Sigma r v_{r}=$ const, or

$$
r^{-\eta} \cdot r \cdot r^{-\xi+1 / 2}=\mathrm{const}
$$

whence

$$
\eta=-\xi+3 / 2
$$

Therefore, a general solution is

$$
T \propto r^{-\xi}, \quad v \propto r^{-\xi+3 / 2}, \quad \Sigma \propto r^{\xi-3 / 2}
$$

To be "physical", these solutions must have at least $\xi>0$ (the farther out from the star, the colder). On the other hand, $\xi<3 / 2$ is a reasonable requirement (the surface density is not expected to grow outward). These are not strict limitations though.

Plotting several of these solutions, for instance for $\xi=0,1 / 2,1$, and $3 / 2$ is straightforward. Hopefully you will not do that in linear scale... $\log -\log$ is the most natural scale to plot power laws.

Addendum: To better understand the concept of viscosity, it can be insightful to study the outward transport of angular momentum trough a viscous disk.

The dynamical viscosity η is defined through the frictional force per area (= stress tension) between two layers spaced by a distance Δx with relative parallel velocity Δv :

$$
\frac{F}{A}=\eta \frac{\Delta v}{\Delta x}
$$

and straight-forward differential version reads

$$
\frac{F}{A}=\eta \frac{\mathrm{d} v}{\mathrm{~d} x}
$$

where the Kepler velocity is given by,

$$
v=\sqrt{\frac{G \mathscr{M}}{r}}
$$

the viscosity can be expressed as,

$$
\eta=\rho v=\rho \alpha c_{\mathrm{s}} h
$$

and the contact area of the viscous layers reads

$$
A=2 \pi r h
$$

In addition the disk's scale height h is given by

$$
h=\frac{c_{\mathrm{s}}}{\Omega_{\mathrm{k}}}
$$

Here Ω_{k} is the Keplerian angular frequency,

$$
\Omega_{\mathrm{k}}=\sqrt{\frac{G \mathscr{M}_{\odot}}{r^{3}}}
$$

and c_{s} the sound speed,

$$
c_{\mathrm{s}}=\sqrt{\frac{k T}{\mu m_{\mathrm{p}}}}
$$

What remains to be known is the local mass density ρ, which is related to the surface mass density Σ through

$$
\rho(r)=\frac{\Sigma(r)}{h(r)}
$$

Since we know $\Sigma \propto r^{-1}$, we can write $\Sigma=\Sigma_{0} r_{0} / r$ and

$$
\mathscr{M}_{\text {disk }} \equiv \int_{0}^{R_{\text {disk }}} \Sigma(r) 2 \pi r \mathrm{~d} r=2 \pi \Sigma_{0} r_{0} \int_{0}^{R_{\text {disk }}} \mathrm{d} r=2 \pi \Sigma_{0} r_{0} R_{\text {disk }}
$$

whence we find

$$
\rho(r)=\frac{\mathscr{M}_{\mathrm{disk}}}{2 \pi r h R_{\mathrm{disk}}}
$$

Finally, the force is related to the angular momentum transfer via

$$
\dot{L}=r F=r \eta A \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

and we find

$$
\begin{aligned}
\dot{L} & =r\left(\rho \alpha c_{\mathrm{s}} h\right)(2 \pi r h)\left(-\frac{1}{2} \sqrt{\frac{G \mathscr{M}}{r^{3}}}\right) \\
& =-\pi \alpha \rho c_{\mathrm{s}} h^{2} \sqrt{G \mathscr{M} r} \\
& =-\pi \alpha\left(\frac{\mathscr{M}_{\mathrm{disk}}}{2 \pi r h R_{\mathrm{disk}}}\right) c_{\mathrm{s}} h^{2} \sqrt{G \mathscr{M} r} \\
& =-\pi \alpha\left(\frac{\mathscr{M}_{\mathrm{disk}}}{2 \pi r R_{\mathrm{disk}}}\right) \frac{c_{\mathrm{s}}^{2}}{\Omega_{\mathrm{k}}} \sqrt{G \mathscr{M} r} \\
& =-\pi \alpha\left(\frac{\mathscr{M}_{\mathrm{disk}}}{2 \pi r R_{\mathrm{disk}}}\right)\left(\frac{k T}{\mu m_{\mathrm{p}}}\right) r^{2} \\
& =-\pi \alpha\left(\frac{r \mathscr{M}_{\mathrm{disk}}}{2 \pi R_{\mathrm{disk}}}\right)\left(\frac{k T}{\mu m_{\mathrm{p}}}\right)
\end{aligned}
$$

Now, we can use standard estimates for the α parameter $\left(\sim 10^{-3}\right.$), the temperature ($T \sim 100 \mathrm{~K}$) and the molecular weight $(\mu \approx 2)$. If we consider $r=R_{\text {disk }}$ for convenience, we find

$$
\dot{L} \approx 4 \times 10^{31} \mathrm{Nm}
$$

For the Sun, we have

$$
L_{\odot} \sim \frac{2}{5} \frac{2 \pi \mathscr{M}_{\odot} R_{\odot}^{2}}{P_{\odot}} \approx 1 \times 10^{42} \mathrm{Nms}
$$

(with $P \approx 25 d=25 \cdot 86400$ s). So, we can write

$$
\dot{L} \approx 4 \times 10^{-11} L_{\odot} \mathrm{s}^{-1} \sim \underline{\underline{10^{-3} L_{\odot} \mathrm{yr}^{-1}}}
$$

Thus, the mechanism can transport a significant amount of angular momentum outward within a few thousand or tens of thousands of years.

