Physics of Planetary Systems - Exercises

Astrophysikalisches Institut und Universitätssternwarte Jena
Thüringer Landessternwarte Tautenburg
Distributed: 2009-04-30; results due: 2009-05-07.

Set 2

Problem 2.1

Figure 1 shows the correlation between period and semi-major axis of known planets as given in the Extrasolar Planet Encyclopaedia (exoplanet.eu). Why is there such a tight correlation? What about the outliers (some are circled)? Do these violate any physical law? What does this figure tell you? (2 points)

Figure 1: Correlation between period and semi-major axis. The left panel is in linear scale, the right one in log-log scale. (Source: exoplanet.eu)

Problem 2.2

Go to the Exoplanet Encyclopaedia (exoplanet.eu) and find all radial velocity detected extrasolar planets with masses $1 \mathscr{M}_{\text {Jup }}<\mathscr{M}<2 \mathscr{M}_{\text {Jup }}$. (Click on "candidates detected by radial velocity". Under "planet table" you can sort by mass.) Estimate the probability that all of these planets are in reality companions with true mass greater or equal to that of a brown dwarf (i.e. $\gtrsim 20 \mathscr{M}_{\text {Jup }}$). (3 points)

Problem 2.3

Consider the following naïve model of the Sun's formation. An "infinitely" large and cold, nonrotating spherical cloud of molecular hydrogen with $\mathscr{M}=\mathscr{M}_{\odot}$ collapses to the radius $R=R_{\odot}$, yielding the Sun. Which mechanism has stopped the collapse? Is the total energy conserved during the collapse? Estimate the temperature T of the cloud in its final state, i.e. the temperature of the Sun.
Hint: use the virial theorem. (3 points)

Problem 2.4

Do you think planetary systems have better chances to develop around stars of lower or higher mass (or luminosity)? Why? (2 points)

