Grundkonzepte der Optik

FSU Jena - SS 08

Übungsserie 10 - Lösungen

Stilianos Louca

28. Juni 2008

Aufgabe 01

Berechnen zuerst das Spektrum der Linsentransmissionsfunktion:

$$T_L(k_x,k_y) = \frac{1}{(2\pi)^2} \int\limits_{\mathbb{R}^2} t_L(x,y) e^{-i(k_x x + k_y y)} \ dx \ dy = \frac{1}{(2\pi)^2} \int\limits_{\mathbb{R}} e^{-i\frac{k}{2f}x^2 - ik_x x} \ dx \cdot \int\limits_{\mathbb{R}} e^{-i\frac{k}{2f}y^2 - ik_y y} \ dy \stackrel{*}{=} \frac{f}{i2\pi k} e^{i\frac{f}{2k}\left(k_x^2 + k_y^2\right)}$$

$$(*): \int\limits_{\mathbb{R}} e^{-\alpha x^2 + i\beta x} \ dx = \sqrt{\frac{\pi}{\alpha}} \cdot e^{-\frac{\beta^2}{4\alpha}}, \ \alpha \in \mathbb{C}, \ \Re(\alpha) > 0, \ \beta \in \mathbb{C}$$

Durch Beleuchtung der Linse mit einer ebenen Welle $u_l^-(x,y) = 1$ ergibt sich das Spektrum $U_l^+(k_x,k_y)$ des Feldes $u_l^+(x,y)$ unmittelbar nach der Linse als

$$U_l^+(k_x, k_y) = \frac{f}{i2\pi k} e^{i\frac{f}{2k}(k_x^2 + k_y^2)}$$

Die Übertragungsfunktion des freien Raumes ist gegeben durch

$$\mathcal{H}(k_x, k_y, z) = e^{ikz} \cdot e^{-\frac{iz}{2k} \left(k_x^2 + k_y^2\right)}$$

so dass sich das Spektrum $U_o^-(k_x,k_y)$ des Feldes $u_0^-(x,y)$ unmittelbar vor dem Objekt ergibt als

$$U_o^-(k_x, k_y) = U_l^+(k_x, k_y) \cdot \mathcal{H}(k_x, k_y, f - d) = \frac{f}{i2\pi k} e^{i\frac{f}{2k}(k_x^2 + k_y^2)} \cdot e^{-\frac{i(f - d)}{2k}(k_x^2 + k_y^2)} \cdot e^{ik(f - d)} = \frac{f}{i2\pi k} e^{i\frac{d}{2k}(k_x^2 + k_y^2)} \cdot e^{ik(f - d)}$$

Sei $T_o(k_x, k_y)$ das Spektrum der Transmissionsfunktion $t_o(x, y)$ des Objektes. Dann ergibt sich das Spektrum $U_o^+(k_x, k_y)$ des Feldes $u_o^+(x, y)$ unmittelbar nach dem Objekt als die Faltung

$$U_o^+(k_x, k_y) = \left[U_o^- * T_o\right](k_x, k_y) = \int_{\mathbb{R}^2} U_o^-(k_x - k_x', k_y - k_y') \cdot T_o(k_x', k_y') \ dk_x' \ dk_y'$$

$$= \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \int_{\mathbb{R}^2} e^{i\frac{d}{2k}\left((k_x - k_x')^2 + (k_y - k_y')^2\right)} \cdot T_0(k_x', k_y') \ dk_x' \ dk_y'$$

Weiter, ergibt sich das Spektrum $U_f(k_x, k_y)$ des Feldes $u_f(x, y)$ in der Brennebene der Linse als

$$U_f(k_x, k_y) = U_o^+(k_x, k_y) \cdot \mathcal{H}(k_x, k_y, d) = \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \cdot e^{ikd} \cdot \int_{\mathbb{R}^2} e^{i\frac{d}{2k}\left((k_x - k_x')^2 + (k_y - k_y')^2\right)} \cdot e^{-i\frac{d}{2k}\left(k_x^2 + k_y^2\right)} \cdot T_0(k_x', k_y') \ dk_x' \ dk_y' = \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \cdot e^{ikd} \cdot \int_{\mathbb{R}^2} e^{i\frac{d}{2k}\left((k_x - k_x')^2 + (k_y - k_y')^2\right)} \cdot e^{-i\frac{d}{2k}\left(k_x^2 + k_y^2\right)} \cdot T_0(k_x', k_y') \ dk_x' \ dk_y' = \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \cdot e^{ikd} \cdot \int_{\mathbb{R}^2} e^{i\frac{d}{2k}\left((k_x - k_x')^2 + (k_y - k_y')^2\right)} \cdot e^{-i\frac{d}{2k}\left(k_x^2 + k_y^2\right)} \cdot T_0(k_x', k_y') \ dk_x' \ dk_y' = \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \cdot e^{ikd} \cdot \int_{\mathbb{R}^2} e^{i\frac{d}{2k}\left((k_x - k_x')^2 + (k_y - k_y')^2\right)} \cdot e^{-i\frac{d}{2k}\left(k_x^2 + k_y^2\right)} \cdot T_0(k_x', k_y') \ dk_x' \ dk_y' = \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \cdot e^{ikd} \cdot \int_{\mathbb{R}^2} e^{i\frac{d}{2k}\left((k_x - k_x')^2 + (k_y - k_y')^2\right)} \cdot e^{-i\frac{d}{2k}\left(k_x^2 + k_y^2\right)} \cdot T_0(k_x', k_y') \ dk_x' \ dk_y' = \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \cdot e^{ikd} \cdot \int_{\mathbb{R}^2} e^{i\frac{d}{2k}\left((k_x - k_x')^2 + (k_y - k_y')^2\right)} \cdot e^{-i\frac{d}{2k}\left(k_x - k_y'\right)} \cdot T_0(k_x', k_y') \ dk_x' \ dk_y' = \frac{f}{i2\pi k} \cdot e^{ik(f-d)} \cdot e^{ik$$

$$= \frac{f}{i2\pi k} \cdot e^{ikf} \cdot \int_{\mathbb{D}^2} e^{i\frac{d}{2k} \left(k'_x{}^2 + k'_y{}^2 - 2k_x k'_x - 2k_y k'_y\right)} \cdot T_o(k'_x, k'_y) \ dk'_x \ dk'_y$$

(Propagation im homogenen Raum). Schließlich, ergibt sich das Feld $u_f(x,y)$ durch die entsprechende Rücktransformation

$$\begin{split} u_f(x,y) &= \mathcal{F}^{-1} \left[U_f(k_x,k_y) \right] (x,y) = \int_{\mathbb{R}^2} U_f(k_x,k_y) \cdot e^{i(k_x x + k_y y)} \ dx \ dy \\ &= \frac{f e^{ikf}}{i2\pi k} \cdot \int_{\mathbb{R}^2} e^{i\frac{d}{2k} \left(k_x'^2 + k_y'^2 \right)} \cdot T_o(k_x',k_y') \cdot \int_{\mathbb{R}^2} e^{ikx \left(x - \frac{dk_x'}{k} \right) + iky \left(y - \frac{dk_y'}{k} \right)} \ dk_x \ dk_y \ dk_x' \ dk_y' \\ &= \frac{2\pi f e^{ikf}}{ik} \int_{\mathbb{R}^2} e^{i\frac{d}{2k} \left(k_x'^2 + k_y'^2 \right)} \cdot T_o(k_x',k_y') \cdot \delta \left(x - \frac{dk_x'}{k} \right) \cdot \delta \left(y - \frac{dk_y'}{k} \right) \ dk_x' \ dk_y' \\ &\eta_i := \frac{dk_i'}{k}}{2\pi k f e^{ikf}} \int_{\mathbb{R}^2} e^{i\frac{k}{2d} \left(\eta_x^2 + \eta_y^2 \right)} \cdot T_o\left(\frac{k\eta_x}{d}, \frac{k\eta_y}{d} \right) \cdot \delta(x - \eta_x) \cdot \delta(y - \eta_y) \ d\eta_x \ d\eta_y \\ &= \frac{2\pi k f}{id^2} e^{ikf} \cdot e^{i\frac{k}{2d} (x^2 + y^2)} \cdot T_o\left(\frac{kx}{d}, \frac{ky}{d} \right) \end{split}$$

Zu erkennen ist: Mit wachsendem Abstand d (Annähern des Objekts an die Linse) ergibt sich eine $h\ddot{o}here$ Auflösung des Bildes, das heißt das abgebildete Bild wird vergrößert (zoom in). Parallel wird jedoch auch die Intensität mit $o(d^{-4})$ schwächer.

Spezialfall

Das Spektrum von t_o ist gegeben durch

$$T_{o}(k_{x}, k_{y}) = \mathcal{F}\left[\frac{1}{2}\left(1 + \cos(2\pi f_{0}x)\right)\right](k_{x}, k_{y}) = \frac{\delta(y)}{4} \cdot \mathcal{F}\left[2 + e^{i2\pi f_{0}x} + e^{-i2\pi f_{0}x}\right](k_{x})$$

$$= \frac{\delta(y)}{4} \cdot \left[2\delta(k_{x}) + \delta(k_{x} - 2\pi f_{0}) + \delta(k_{x} + 2\pi f_{0})\right]$$

Somit ist die Intensitätsverteilung in der Brennebene gegeben durch

$$I(x,y) = \frac{\pi^4 f^2}{\lambda^2 d^4} \cdot \delta^2(y) \cdot \left[2\delta \left(\frac{2\pi x}{\lambda d} \right) + \delta \left(\frac{2\pi x}{\lambda d} - 2\pi f_0 \right) + \delta \left(\frac{2\pi x}{\lambda d} + 2\pi f_0 \right) \right]^2$$

$$\cong \frac{\pi^4 f^2}{\lambda^2 d^4} \cdot \delta^2(y) \cdot \left[2\delta(x) + \delta(x - \lambda df_0) + \delta(x + \lambda df_0) \right]^2$$

Zu erkennen ist: die einzelnen Beugungsordnungen treten im Abstand $\lambda df_0 = 6.33$ mm auf.

Endliche Apertur

Bei endlicher Apertur würden in obiger Herleitung die Integrationsgebiete endlich sein, was einer Spektralfunktion T_o des Objekts mit beschränktem Träger entspricht. Anders gesagt: die hohen Ortsfrequenzen werden durch die beschränkte Apertur des Systems herausgefiltert so dass das Beugungsbild, das ja im Endeffekt des Spektrums der Transmissionsfunktion entspricht, genauso von beschränkter Größe ist.

Aufgabe 02

a) Die Transmissionsfunktionen t_s, t_p, t_z einer sphärischen Linse, eines Prismas und einer zylindrischen Linse (gekrümmt entlang der y-Achse) sind jeweils gegeben durch

$$t_s(x,y) = e^{-i\frac{k}{2f}(x^2+y^2)}$$
 , $t_p(x,y) = e^{-i\frac{2\pi}{\lambda}\sin\vartheta \cdot y}$, $t_z(x,y) = e^{-i\frac{k}{2f}y^2}$

wobei f die jeweilige Brennweite der Linse und ϑ der Ablenkungswinkel des Prismas ist. Unter der Forderung dass alle 3 Bauteile koaxial stehen, das heißt deren Koordinatenursprünge zusammenfallen, ergibt sich

$$e^{-i\pi \left(a^2x^2 + (by + c)^2\right)} \equiv e^{-i\pi \left[a^2\left(x^2 + y^2\right) + \left(b^2 - a^2\right)y^2 + 2bcy + c^2\right]} \stackrel{!}{\equiv} e^{-i\frac{k}{2f_s}\left(x^2 + y^2\right)} \cdot e^{-i\frac{k}{2f_z}y^2} \cdot e^{-i\frac{2\pi}{\lambda}\sin\vartheta\cdot y}$$

Abzulesen ist:

$$\pi a^2 \stackrel{!}{=} \frac{k}{2f_s} \rightarrow f_s = \frac{1}{\lambda a^2}$$

$$\pi \left(b^2 - a^2\right) \stackrel{!}{=} \frac{k}{2f_z} \rightarrow f_z = \frac{1}{\lambda \left(b^2 - a^2\right)}$$

$$2\pi bc \stackrel{!}{=} \frac{2\pi}{\lambda} \sin \vartheta \rightarrow \sin \vartheta = bc\lambda$$

Der Parameter $c^2\pi$ kann zum Beispiel durch eine weitere Dicke $d = \frac{\lambda c^2}{2}$ einer der beiden Linsen erlungen werden.

b) Führen ein neues kartesisches Koordinatensystem (x', y') ein, das um den Winkel ϑ zum ursprünglichen gedreht ist:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} \cos\vartheta & -\sin\vartheta \\ \sin\vartheta & \cos\vartheta \end{array}\right) \cdot \left(\begin{array}{c} x' \\ y' \end{array}\right)$$

In diesem Koordinatensystem lautet dann die zu erzielende Transmissionsfunktion

$$t'(x',y') = e^{-i\pi d \cdot x(x',y') \cdot y(x',y')} = \exp\left\{-i\pi d\left[\cos\vartheta\sin\vartheta\left({x'}^2 - {y'}^2\right) + x'y'\left(\cos^2\vartheta - \sin^2\vartheta\right)\right]\right\}$$

Zu sehen ist: Speziell für $\vartheta = \frac{\pi}{4}$ geht diese über in

$$t'(x', y') = \exp\left\{-i\frac{\pi d}{2}\left(x'^2 - y'^2\right)\right\}$$

Die Kombination zweier Zylinderlinsen mit jeweils den Brennweiten $f_1 = \frac{2}{\lambda d}$ bzw. $f_2 = -\frac{2}{\lambda d}$ gekrümmt in der x' bzw. y' Achse, würde genau diese Transmissionsfunktion ergeben, denn dann wäre

$$t_1(x',y') \cdot t_2(x',y') = e^{-i\frac{k}{2f_1}x'^2} \cdot e^{-i\frac{k}{2f_2}y'^2} = e^{-i\frac{\pi d}{2}(x'^2 - y'^2)}$$

wie gewünscht. \square