Mathematische Biologie FSU Jena - WS 2009/2010 Übungsserie 11 - Lösungen

Stilianos Louca

24. Januar 2010

Aufgabe 11

Betrachtet sei das DGL-System

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) := \begin{pmatrix} y - x^3 + 3x^2 + 2 - \mu \\ 1 - 5x^2 - y \end{pmatrix}$$

in $\mathbf{x}:=(x,y)$ mit zunächst festem Parameter $\mu.$

(a) Die beiden Hauptisoklinen sind gegeben durch

$$\begin{aligned} &\{\dot{x}=0\} = \left\{y = x^3 - 3x^2 - 2 + \mu =: s(x)\right\} \\ &\{\dot{y}=0\} = \left\{y = 1 - 5x^2 =: w(x)\right\} \end{aligned}$$

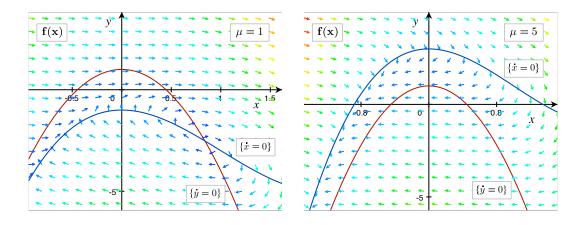


Abbildung 0.1: Typischer Verlauf des Vektorfeldes $\mathbf{f}(\mathbf{x})$ für verschiedene $\mu\textsc{-Werte}.$

Durch

$$\frac{ds}{dx} = 3x(x-2)$$
 , $\frac{d^2s}{dx^2} = 6(x-1)$

wird ersichtlich, dass s ein lokales Maximum bei $x_{s,max} := 0$ und ein lokales Minimum bei $x_{s,min} := 2$ besitzt (vgl. Abb. (0.2)).

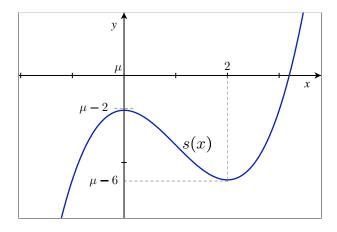


Abbildung 0.2: Verlauf der s-Isokline ($\{\dot{x}=0\}$). Ein Variation von μ entspricht lediglich einer vertikalen Verschiebung von s.

Die Fixpunkte \mathbf{x}^0 ergeben sich als Schnittpunkte der Hauptisoklinen:

$$\{\text{Fixpunkte}\} = \{(x, s(x)) : x^3 + 2x^2 - 3 + \mu =: P(x) = 0\}$$

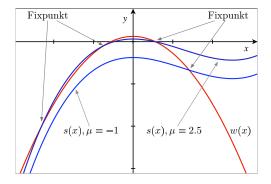
$$(0.1)$$

Zu erkennen ist:

- Jeder Fixpunkt \mathbf{x}^0 ist eindeutig bestimmt durch seine erste Komponente x^0 , die als Nullstelle des Polynoms P charakterisiert ist.
- Das Polynom P(x) besitzt mindestens eine Nullstelle, da $\lim_{x\to\pm\infty}=\pm\infty$. Anderseits besitzt es höchstens 3 Nullstellen.
- Im Fall $\mu=0$ besitzt P genau ein lokales Maximum bei $x_{\rm p,max}:=-4/3$ und lokales Minimum bei $x_{\rm p,min}=0$ mit jeweils den Werten $P_{\rm max}=\mu-49/27$ und $P_{\rm min}=\mu-3$.
- Daher besitzt P:
 - o Genau eine (positive bzw. negative) Nullstelle falls $P_{\rm max} < 0$ oder $P_{\rm min} > 0$, sprich $\mu < 49/27$ bzw. $\mu > 3$.
 - $\circ~$ Die triviale und eine negative Nullstelle falls $P_{\min}=0,$ sprich $\mu=3.$
 - Eine positive und eine negative Nullstelle falls $P_{\rm max}=0$, sprich $\mu=49/27$.
 - o Die triviale und zwei Nullstellen unterschiedlichen Vorzeichens falls $P_{\min} < 0 < P_{\max}$, sprich $\mu \in (49/27,3)$.

(vgl. Abb. (0.4)).

Abbildung (0.3) zeigt die beiden Hauptisoklinen bzw. deren Schnittpunkte für verschiedene μ -Werte.



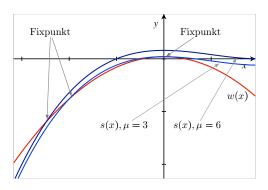


Abbildung 0.3: s- und w-Isoklinen für verschiedene Parameterwerte $\mu < 3$ und $\mu \ge 3$.

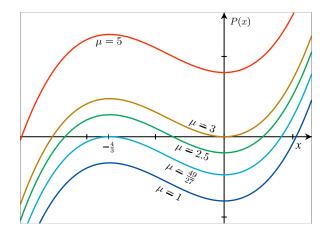


Abbildung 0.4: Verlauf des Polynoms P(x) für verschiedene $\mu ext{-Werte}.$

Wie in Abbildung (0.4) zu erkennen ist, entsprechen die kritischen μ -Werte $\mu_1^c = 49/27$ und $\mu_2^c = 3$ den neu entstehenden bzw. sich aufspaltenden Fixpunkten $x_1^c = x_{\rm p,max} = -4/3$ und $x_2^c = x_{\rm p,min} = 0$. Der allgemeine Verlauf der Fixpunkte ist in Abb. (0.5) qualitativ illustriert.

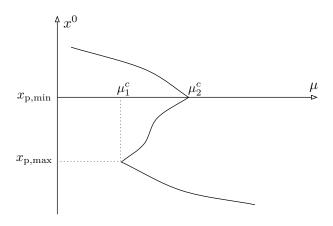


Abbildung 0.5: Verlauf der Fixpunkte x^0 bei variierenden μ -Werten. Beachte die beiden Tangentenbifurkationen bei den kritischen Werten μ_1^c, μ_2^c .

(b) Der Jacobian

$$J(\mathbf{x}) := \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{pmatrix} -3x^2 + 6x & 1\\ -10x & -1 \end{pmatrix}$$

besitzt die Eigenwerte

$$\lambda_{1,2} = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_2}$$

wobei

$$a_1 := 3x^2 - 6x + 1 = \left[x - \left(1 + \frac{2}{\sqrt{6}}\right)\right] \cdot \left[x - \left(1 - \frac{2}{\sqrt{6}}\right)\right]$$

$$a_2 := 3x^2 + 4x = 3x \cdot \left(x + \frac{4}{3}\right) = 3\left(x - x_{\text{p,min}}\right)\left(x - x_{\text{p,max}}\right)$$

Tabelle (0.1) zeigt das Vorzeichen-Kerhalten der Koeffizienten a_1, a_2 .

x^0		$x_{p,\max}$		$x_{\mathrm{p,min}}$		$ \begin{array}{c} 1 - \frac{2}{\sqrt{6}} \\ 46 - 10\sqrt{6} \end{array} $		$ \begin{array}{r} 1 + \frac{2}{\sqrt{6}} \\ 46 + 10\sqrt{6} \end{array} $	
$\mu(x^0)$		μ_1^c		μ_2^c		$\frac{40-10\sqrt{6}}{3\sqrt{6}}$		$-\frac{40+10\sqrt{6}}{3\sqrt{6}}$	
a_1	+	+	+	+	+	0	_	0	+
a_2	+	0	_	0	+	+	+	+	+
Stabilität	St.		Satt.		St.		Inst.		St.

Tabelle 0.1: Vorzeichen-Verhalten der Eigenwert-Koeffizienten a_1, a_2 und Stabilitätsverhalten möglicher Fixpunkte x^0 . Dazu angegeben sind die μ -Werte bei denen die kritischen Fixpunkte x^0 zustande kommen (vgl. Charakterisierung (0.1)).

Abbildung (0.5) nimmt dementsprechend die in (0.6) illustrierte Form an.

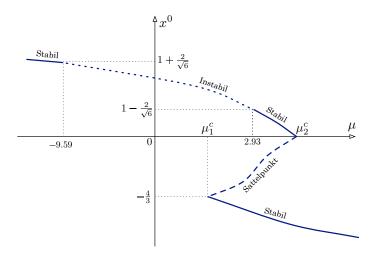


Abbildung 0.6: Qualitativer Fixpunktverlauf & Stabilitätsverhalten bei variierendem μ . Beachte die beiden Tangentenbifurkationen an den kritischen Werten μ_1^c, μ_2^c .

(c) Abbildung (0.7) zeigt das vollständige Bifurkationsdiagramm, inklusive Grenzzyklen.

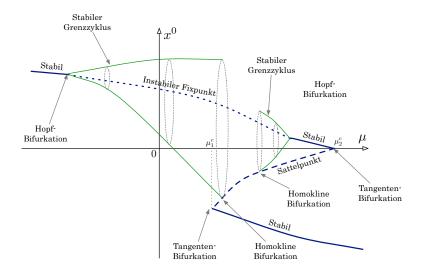


Abbildung 0.7: Vollständiges Bifurkationsdiagramm.

Abbildung (0.8) zeigt eine numerische Integration der Bewegungsgleichung bei vorhandenem Grenzzyklus.

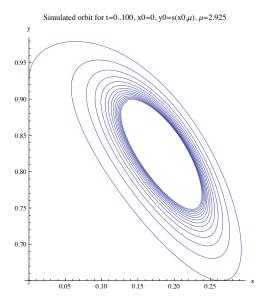


Abbildung 0.8: Beispiel-Simulation für festes $\mu=2.925$ und Anfangswerten $x_0=0,\ y_0=s(x_0)$. Klar zu erkennen ist, das äußere Annähern des Orbits an den stabilen Grenzzyklus.

(d) Betrachtet sei nun $\mu =: z(t)$ als langsam veränderlicher Parameter im DGL-System

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} y - x^3 + 3x^2 + 2 - z \\ 1 - 5x^2 - y \\ r \cdot [s(x - x_1) - z] \end{pmatrix} , \quad r = 0.001, \quad s = 4, \quad x_1 = -1.618$$

Bei genügend langsamer Veränderung von z bewegt sich das System entlang seiner stabilen Fixpunktzweige. Ein annähern von rechts, entlang des unteren (stabilen) Zweigs führt irgendwann zum kritischen Punkt $x=\mu_1^c$, was mit einem abrupten Übergang in den mit dem oberen Zweig assoziierten Grenzzyklus verbunden ist (vgl. Abb. (0.7)). Insbesondere bewirken die nun erhöhten Werte von x auch eine entsprechende Erhöhung des langsamen Parameters z was wiederum am homoklinen Bifurkationspunkt auf den alten Zweig führt. Abbildungen (0.10) und (0.10) zeigen diesen verlauf anhand einer numerischen Integration der Bewegungsgleichungen.

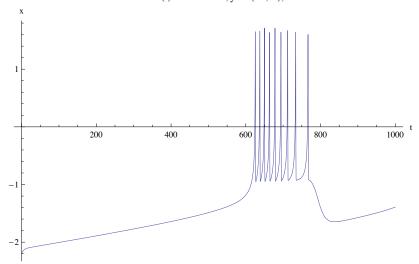
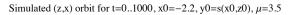


Abbildung 0.9: Simulation der x-Entwicklung bei langsamvariierendem z. Anfangswerte waren $x_0 = -2.2$ (unterer Fixpunktzweig), $y_0 = s(y_0, z_0)$ und $z_0 = 3.5$ (Annäherung von rechts).



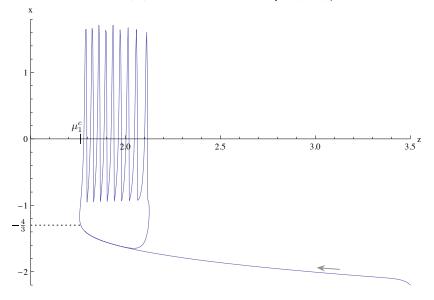


Abbildung 0.10: Simulation des (z,x)-Orbits für Anfangswerte $x_0=-2.2$ (unterer Fixpunktzweig), $y_0=s(y_0,z_0)$ und $z_0=3.5$ (Annäherung von rechts). Zu erkennen ist das plötzliche *Aufschwingen* des schnellen Parameters x durch langsame Reduzierung von z und die automatische Beruhigung mit anschließender Wiederholung des Vorgangs.