Mathematik Vorkurs für Physiker

FSU Jena - WS 2008/2009

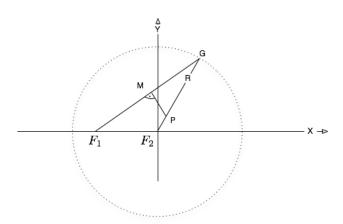
Thema 04 - Kegelschnitte

Prof. Karl H. Lotze

FEYNMANS Ellipsenkonstruktion

In seiner legendären Vorlesung "Die Bewegung der Planeten um die Sonne" am 13. März 1964 hat R.P. FEYNMAN die folgende Konstruktionsvorschrift für eine Ellipse gegeben:

- 1. Legen Sie zwei Punkte F_1 und F_2 fest.
- 2. Zeichnen Sie um einen der beiden Punkte, z.B. F_2 , einen Kreis, dessen Radius R größer als der Abstand $\overline{F_1F_2}$ ist.
- 3. Verbinden Sie die beiden Punkte F_1 und F_2 mit einem beliebigen Punkt G auf dem Kreis.
- 4. Errichten Sie auf der Verbindung $\overline{F_1G}$ die Mittelsenkrechte. Diese schneidet die Verbindung $\overline{F_2G}$ in einem Punkt P.



- a) Beweisen Sie mit den Mitteln der analytischen Geometrie (Geraden-, Kreis- und Ellipsengleichungen), daß eine Wanderung des Punktes G auf dem Kreis eine Bewegung des Punktes P auf einer Ellipse nach sich zieht.
- b) Drücken Sie Lage, Form und Größe der Ellipse durch den Anstand $\overline{F_1F_2}$ und den Radius des Kreises aus. Welcher Zusammenhang besteht zwischen dieser Konstruktionsvorschrift und der "Gärtnerkonstruktion" einer Ellipse?

Koordinatentransformationen

Gegeben sei die Gleichung 2. Grades

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0.$$

a) Führen Sie eine Drehung

$$x = x' \cos \varphi - y' \sin \varphi$$
, $y = x' \sin \varphi + y' \cos \varphi$

des Koordinatensystems aus und ordnen Sie die Terme so, daß die Gleichung 2. Grades die Gestalt

$$A'x'^{2} + 2B'x'y' + C'y'^{2} + 2D'x' + 2E'y' + F = 0$$

annimmt. Bestimmen Sie dann den Drehwinkel φ derart, daß der Koeffizient B' und durch ihn das gemischt-quadratische Glied verschwindet Hinweis: Es ist $2\sin\varphi\cos\varphi=\sin2\varphi$ und $\cos^2\varphi-\sin^2\varphi=\cos2\varphi$.

b) Bringen Sie an der verbleibenden Gleichung

$$A'x'^2 + 2D'x' + C'y'^2 + 2E'y' + F = 0$$

quadratische Ergänzungen an und verschieben Sie den Koordinatenursprung so, daß die Gleichung die Gestalt der Mittelpunktsgleichung von Kegelschnitten annimmt.

c) Diskutieren Sie in der angegebenen Weise die Beispiele

i)
$$2x^2 + 3y^2 - 4x + 6y - 7 = 0$$

ii)
$$xy = 1$$

iii)
$$x^2 + 2\sqrt{3}xy + 3y^2 + 2\sqrt{3}x - 2y = 0$$

iv)
$$x^2 - 4xy + 4y^2 - 6x + 12y + 8 = 0$$

und zeichnen Sie die Kurven 2. Grades zusammen mit den gedrehten und verschobenen Koordinatensystemen.