Maß & Integrationstheorie

FSU Jena - SS 2008 Übungsserie 07 - Lösungen

Stilianos Louca

9. Juni 2008

Aufgabe 01

Bemerke: Es ist $P^{-1}(A) = A$ genau dann wenn P(A) = A ist. Denn ist $P^{-1}(A) = A$ dann ist auch $P(A) = P(P^{-1}(A)) = A$, und ist P(A) = A so ist $P^{-1}(A) = P^{-1}(P(A)) = A$.

Zeigen: \mathcal{M} ist σ -Algebra

- $M \in \mathcal{M} \text{ denn } P^{-1}(M) = M$.
- Sei $A \in \mathcal{M}$, das heißt $P^{-1}(A) = A$. Wegen injektivität ist $P(A^c) \cap P(A) = \emptyset$, denn gäbe es ein $y \in P(A^c) \cap P(A)$ so gäbe es $x_1 \in A, x_2 \in A^c$ mit

$$P(x_1) = P(x_2) \xrightarrow{P \text{ injektiv}} x_1 = x_2 \rightarrow x_1 \in A^c \cap A^c \text{ Widerspruch}$$

Doch wegen $P(M) \stackrel{P \text{ surjektiv}}{=} M$ muss $P(A^c) \cup P(A) = M$ sein. also ist $P(A^c) = (P(A))^c \stackrel{P(A)=A}{=} A^c$, woraus folgt $A^c \in \mathcal{M}$.

• Seien $A_n \in \mathcal{M}$ und $A := \bigcup_{n \in \mathbb{N}} A_n$. Dann ist

$$P(A) = P\left(\bigcup_{n \in \mathbb{N}} A_n\right) \stackrel{\text{Def. von}}{=} \bigcup_{n \in \mathbb{N}} P(A_n) \stackrel{P(A_n) = A_n}{=} \bigcup_{n \in \mathbb{N}} A_n = A$$

also $A \in \mathcal{M}$.

Beschreibung der messbaren Funktionen

Sei $f:(M,\mathcal{M})\to(\hat{\mathbb{R}},\mathscr{B}(\hat{\mathbb{R}}))$ eine messbare reelle Funktion, also $f:(M,\mathcal{M})\to(\mathbb{R},\mathscr{B}(\mathbb{R}))$, das heißt

$$\forall B \in \mathscr{B}(\mathbb{R}) : f^{-1}(B) \in \mathcal{M}$$

Da die Algebra $\mathcal{M} \subset \mathscr{P}(M)$, $|\mathscr{P}(M)| = 2^n$ endlich ist, existiert nach Übungsserie 01 eine (eindeutige, endliche) Zerlegung $\mathscr{S} = \{S_1, ..., S_k\}$ von M so dass $\mathcal{M} = \alpha(\mathcal{S})$ ist, wobei die $S_i \in \mathcal{M}$ genau die Atome von \mathcal{M} sind.

Betrachten wir nun ein Element $a \in M$ mit dem zugehörigen Atom $S \in \mathcal{S}$ (vgl. Übungsserie 01). Dann muss $A := f^{-1}(\{f(a)\})$ in \mathcal{M} liegen (da $\{f(a)\}$ natürlich eine Borelmenge ist) und sich natürlich auch mit S schneiden (da $S \ni a \in A$), das heißt

$$\underbrace{S \cap A}_{\text{da } \mathcal{M} \text{ } \sigma-\text{Algebra}} \neq \emptyset$$

Wegen $S \cap A \subset S$ muss $S \cap A$ entweder leer sein oder gleich S sein (da S Atom). Ersteres wurde ausgeschlossen, also ist $S \cap A = S$ und somit $S \subset A = f^{-1}(\{f(a)\})$, das heißt die Einschränkung von f auf ein Atom S ist konstant. Somit lässt sich f eindeutig durch die Angabe ihres Wertes auf jedem Atom beschreiben.

Beispiel: Ist z.B. P eine zyklische Verschiebung ungleich der Identität, beispielsweise

$$P(i) = \begin{cases} i+1 & : i < n \\ 1 & : i = n \end{cases}, \quad n > 1$$

so ist $\mathcal{M} = \{\emptyset, M\}$ und deshalb $\mathscr{S} = \{M\}$. Somit muss f auf ganz M konstant sein!

Umgekehrt: Jede Funktion $f: M \to \mathbb{R}$ die auf den Atomen von \mathcal{M} konstant ist, ist messbar von (M, \mathcal{M}) nach $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, denn sei $A \in \mathbb{R}$ und $A_r = f^{-1}(A)$. Für beliebiges $m \in A_r \in \mathcal{M}$ sei S das zugehörige Atom $(m \in S)$. Dann ist

$$P(m) \overset{S \in \mathcal{M}}{\in} S \rightarrow f(P(m)) \overset{f|_{S:\text{const}}}{=} f(m) \overset{m \in f^{-1}(A)}{\in} A$$

also

$$P(m) \in A_r \to P(A_r) \subset A_r \to A_r \in \mathcal{M}$$

das heißt f ist messbar.

Alternativ könnte man oberen Sachverhalt wie folgt formulieren: Eine Funktion $f:(M,\mathcal{M})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ ist genau dann messbar wenn f(m)=f(P(m)) ist.

Aufgabe 02

- a) Bild: $\infty > \hat{\rho}(x,y) \ge 0 \ \forall \ x,y$
 - Positiv definit: Es ist klar dass $\hat{\rho}(x,x) = |h(x) h(x)| = 0$ ist. Sei andernfalls $\hat{\rho}(x,y) = 0$, das heißt h(x) = h(y). Ist $x = \infty$ so ist h(y) = h(x) = 1, also muss auch $y = \infty$ sein, denn für $y \in \mathbb{R}$ ist $\frac{y}{1 + |y|} \neq 1$. Analog folgt aus x = -1 auch y = -1. Ist $x \in \mathbb{R}$, so muss

$$\frac{x}{1+|x|} = \frac{y}{1+|y|}$$

sein. Doch die Funktion $f(x) := \frac{x}{1+|x|}$ ist in $\mathbb R$ streng monoton wachsend, denn:

$$x > 0: f'(x) = \frac{1}{(1+x)^2} > 0, \ x < 0: f'(x) = \frac{1}{(1-x)^2} > 0 \ \rightarrow \text{ streng monoton wachsend auf } \mathbb{R} \setminus \{0\}$$

$$x>0: f(x)>0 \ , \ x<0: f(x)<0 \ \rightarrow \ \sup_{x<0} f(x) \leq 0 = h(0) \leq \inf_{x>0} f(x) \ \text{streng monoton wachsend auf } \mathbb{R}$$

Also ist f injektiv in \mathbb{R} . Somit muss x = y sein.

- Symmetrie: Offensichtlich ist $\hat{\rho}(x,y) = |h(x) h(y)| = |h(y) h(x)| = \hat{\rho}(y,x)$
- Dreiecksungleichung: Seien $x, y, z \in \hat{\mathbb{R}}$ beliebig. Dann ist

$$\hat{\rho}(x,z) = |h(x) - h(z)| = |h(x) - h(y) + h(y) - h(z)| \le |h(x) - h(y)| + |h(y) - h(z)| = \hat{\rho}(x,y) + \hat{\rho}(y,z)$$

Somit ist $\hat{\rho}$ eine Metrik auf $\hat{\mathbb{R}}$. \square

b) • **Bild:** Für $x \in \mathbb{R}$ ist

$$-1 < -\frac{|x|}{1+|x|} \le \underbrace{\frac{x}{1+|x|}}_{h(x)} \le \frac{|x|}{1+|x|} < 1$$

Da auch $h(\pm \infty) \in [-1,1]$ ist, ist $h\left(\hat{\mathbb{R}}\right) \subset [-1,1]$.

• Bijektivität: In Teil (b) wurde schon gezeigt: $h \mid_{\mathbb{R}} = f$ ist streng monoton wachsend. Wir haben außerdem gesehen:

$$h(-\infty) = -1 < h(x) < 1 = h(\infty)$$

Also ist h auf ganz $\hat{\mathbb{R}}$ streng monoton wachsend und somit auch injektiv. Für beliebiges $y \in (-1,1)$ ist außerdem

$$h\left(\frac{y}{1-|y|}\right) = \frac{\frac{y}{1-|y|}}{1+\left|\frac{y}{1-|y|}\right|} = \frac{y}{|1-|y||+|y|} \cdot \frac{1-|y| \text{ da } |y|<1}{1-|y|} = \frac{y}{1-|y|+|y|} = y$$

das heißt $(-1,1) \subset h\left(\hat{\mathbb{R}}\right)$. Somit ist $[-1,1] \subset h\left(\hat{\mathbb{R}}\right)$ also h surjektiv. Das heißt h ist bijektiv und somit umkehrbar. \square

• Stetigkeit: Sei $x_n \to x \in \hat{R}$ in $(\hat{\mathbb{R}}, \hat{\rho})$, das heißt

$$\hat{\rho}(x_n, x) = |h(x_n) - h(x)| \xrightarrow{n \to \infty} 0 \stackrel{\text{Def.}}{\Longrightarrow} h(x_n) \xrightarrow{|\cdot|} h(x)$$

Somit ist die Stetigkeit von h in $(\hat{\mathbb{R}}, \hat{\rho})$ eine Tautologie. \square

• Umkehrung: Setzen für $y \in (-1, 1)$

$$h^{-1}(y) := \frac{y}{1 - |y|}$$

und $h^{-1}(\pm 1) := \pm \infty$. Dann ist h^{-1} Rechtsinverse von h. Da h bijektiv ist, ist h^{-1} auch Linksinverse von h. \square

• Stetigkeit von h^{-1} : Sei $y_n \xrightarrow{|\cdot|} y \in [-1, 1]$, das heißt

$$|y_n - y| = |h(h^{-1}(y_n)) - h(h^{-1}(y))| = \hat{\rho}(h^{-1}(y_n), h^{-1}(y)) \xrightarrow{n \to \infty} 0$$

Somit ist die Stetigkeit von h^{-1} auch eine Tautologie.

c) Nennen für $x \in \mathbb{R}$:

$$B_{\varepsilon}(x) := \{ y \in \mathbb{R} \mid \rho(x, y) \le \varepsilon \}$$

$$\hat{B}_{\varepsilon}(x) := \{ y \in \mathbb{R} \mid \hat{\rho}(x, y) \le \varepsilon \}$$

Falls nichts anderes gesagt wird, ist lim immer bzgl. |-| zu deuten.

• Sei $x \in \mathbb{R}$ und $\varepsilon > 0$ beliebig. Dann existiert ein $\delta > 0$ mit: $\hat{B}_{\delta}(x) \subset B_{\varepsilon}(x)$. Beweis durch Widerspruch: Annahme:

$$\exists \ \varepsilon > 0 : \forall \ \delta_n > 0 : \exists \ y_n \in \hat{B}_{\delta}(x) \setminus B_{\varepsilon}(x)$$

Nehmen also solch ein ε . Lassen $\delta_n \xrightarrow{|\cdot|} 0$ gehen, dazu entsprechend (y_n) . Dann gilt stets

$$\rho(x, y_n) > \varepsilon \wedge \hat{\rho}(x, y_n) < \delta_n$$

also

$$\hat{\rho}(x, y_n) \stackrel{n \to \infty}{\longrightarrow} 0 \quad \Rightarrow \quad \lim_{n \to \infty} h(y_n) = h(x)$$

Da auch $h^{-1}:((-1,1),\rho)\to(\mathbb{R},\mathscr{B}(\mathbb{R}))$ als

$$h^{-1}(y) = \frac{y}{1 - |y|}$$

stetig ist, ist

$$x = h^{-1}(h(x)) = h^{-1}\left(\lim_{n \to \infty} h(y_n)\right) = \lim_{n \to \infty} h^{-1}(h(y_n)) = \lim_{n \to \infty} y_n$$

Doch auch $\hat{\rho}(x,\cdot)\mid_{\mathbb{R}}$ ist bzgl. $|\cdot|$ stetig, das heißt $\lim_{n\to\infty}\hat{\rho}(x,y_n)=\hat{\rho}(x,x)=0$.

Andererseits ist jedoch wegen $\hat{\rho}(x, y_n) > \varepsilon$

$$\lim_{n \to \infty} \hat{\rho}(x, y_n) \ge \varepsilon > 0$$

was ein Widerspruch ist.

Haben also gezeigt: Für $x \in \mathbb{R}$ und $\varepsilon > 0$ gibt es ein $\delta > 0$ so dass

$$\hat{B}_{\delta}(x) \subset B_{\varepsilon}(x)$$

Sei nun G in (\mathbb{R}, ρ) offen und $x \in G$ beliebig. Dann gibt es ein $\varepsilon > 0$ mit $B_{\varepsilon}(x) \subset G$. Dazu gibt es jedoch auch ein $\delta > 0$ mit

$$\hat{B}_{\delta}(x) \subset B_{\varepsilon}(x) \subset G$$

das heißt G ist auch offen in $(\hat{\mathbb{R}}, \hat{\rho})$.

• Seien $x, y \in \mathbb{R}$ mit $\rho(x, y) < \varepsilon < 1$. Dann ist

$$\hat{\rho}(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right| = \left| \frac{x-y+x|y|-y|x|}{(1+|x|)(1+|y|)} \right| \le \left| \frac{x-y}{(1+|x|)(1+|y|)} \right| + \left| \frac{x|y|-y|x|}{(1+|x|)(1+|y|)} \right|$$

$$\leq |x - y| + |x|y| - y|x| = \rho(x, y) + |xy| |\operatorname{sgn}(x) - \operatorname{sgn}(y)|$$

Ist $\operatorname{sgn}(x) = \operatorname{sgn}(y)$ so ist $\hat{\rho}(x,y) \leq \rho(x,y)$. Ist andernfalls $\operatorname{sgn}(x) \neq \operatorname{sgn}(y)$ so ist $|\operatorname{sgn}(x) - \operatorname{sgn}(y)| = 2$ also

$$\hat{\rho}(x,y) \leq \rho(x,y) + 2\left|xy\right| \overset{*}{\leq} \rho(x,y) + \left(|x| + |y|\right)^2 = \rho(x,y) + \left|x - y\right|^2 \overset{|x - y| < 1}{\leq} \rho(x,y) + |x - y| = 2\rho(x,y)$$

$$(*): 0 \le (|x| + |y|)^2 = x^2 + y^2 + 2|xy| \rightarrow 2|xy| \le (|x| + |y|)^2$$

Also ist allgemein für $\rho(x,y) < \varepsilon < 1$ auch $\hat{\rho}(x,y) \le 2\varepsilon$, das heißt für $0 < \varepsilon < 1$ ist

$$B_{\varepsilon}(x) \subset \hat{B}_{2\varepsilon}(x)$$

Sei jetzt G in $(\hat{\mathbb{R}}, \hat{\rho})$ offen, das heißt für $x \in G$ existiert ein $1 > \varepsilon > 0$ so dass $\hat{B}_{2\varepsilon}(x) \subset G$ ist. Nach vorigem Ergebnis ist dann auch

$$B_{\varepsilon}(x) \subset \hat{B}_{2\varepsilon}(x) \subset G$$

das heißt G ist auch offen in (\mathbb{R}, ρ) .

Somit erzeugen $\hat{\rho}\mid_{\mathbb{R}\times\mathbb{R}}$ und ρ die gleichen offene Mengen. \square

Variante

Wir haben gesehen: $h:(\hat{\mathbb{R}},\hat{\rho})\to([-1,1],\rho)$ und $h^{-1}:([-1,1],\rho)\to\left(\hat{\mathbb{R}},\hat{\rho}\right)$ sind stetig. Ferner sind aber auch

$$h: (\mathbb{R}, \rho) \to ((-1, 1), \rho) \ , \ h(x) = \frac{x}{1 + |x|} \ (*)$$

und

$$h^{-1}((-1,1),\rho) \to (\mathbb{R},\rho) , h(y) = \frac{y}{1-|y|} (**)$$

stetig. Sei nun $G \subset \mathbb{R}$ offen in (\mathbb{R}, ρ) . Dann ist wegen (**)

$$h(G) = (h^{-1})^{-1}(G) \subset ((-1,1), \rho)$$

offen, und somit

$$G = h^{-1}(h(G))$$

offen in $(\hat{\mathbb{R}}, \hat{\rho})$.

Sei andernfalls $G \subset \mathbb{R}$ offen in $(\hat{\mathbb{R}}, \hat{\rho})$. Dann ist

$$h(G) = (h^{-1})^{-1}(G) \subset ((-1,1), \rho)$$

offen in $((-1,-1),\rho)$. Wegen (*) ist dann aber auch

$$G = h^{-1}(h(G))$$

offen in (\mathbb{R}, ρ) . \square

Aufgabe 03

Sei $f: \mathbb{R} \to \mathbb{R}$ monoton, o.B.d.A monoton wachsend.

Zeigen: Messbarkeit

Aus der Vorlesung ist bekannt: Ist $f^{-1}((-\infty,r)) \in \mathcal{B}(\mathbb{R})$ für jedes $r \in \Lambda$, Λ dicht in \mathbb{R} , so ist f messbar. Setzen also $\Lambda = \mathbb{R}$ und betrachten das Urbild

$$U_r := f^{-1}((-\infty, r)) := \{x \in \mathbb{R} \mid f(x) < r\}$$

Ist $x_0 \in U_r$ so ist auch $x \in U_r \ \forall \ x < x_0$ da f monoton wachsend (also $f(x) \le f(x_0)$). Ist U_r nach oben unbeschränkt, so ist $U_r = \mathbb{R} \in \mathscr{B}(\mathbb{R})$, denn

$$\forall x \in \mathbb{R} : \exists M \in U_r : M > x \rightarrow x \in U_r$$

Ist U_r nach oben beschränkt, so sei $x_0 := \sup U_r$. Dann gilt:

- Für jedes $x > x_0$ ist $x \notin U_r$ (da x_0 Supremum)
- Für jedes $x < x_0$ ist $x \in U_r$, denn für $\varepsilon := \frac{x_0 x}{2} > 0$ existiert ein $x_1 \in U_r$ mit $x_1 \in [x_0 \varepsilon, x_0] \cap U_r$. Wegen $x < x_0 \varepsilon < x_1$ ist dann aber auch $x \in U_r$.

Also ist U_r ein Intervall der Art $(-\infty, x_0)$ bzw. $(-\infty, x_0]$ also auch wieder in $\mathscr{B}(\mathbb{R})$. Somit ist f messbar. \square Bemerkungen:

- Wäre f monoton fallend, so wäre der Beweis total analog, nur würde U_r entweder \mathbb{R} oder vom Typ (x_0, ∞) bzw. $[x_0, \infty)$ sein.
- Ist eine monotone f nur auf einem Intervall [a, b] definierte Funktion, so ist sie trotzdem messbar, denn: Sei f o.B.d.A monoton wachsend, so setzen wir

$$\tilde{f}(x) := \begin{cases} f(a) & : x < a \\ f(b) & : x > b \\ f(x) & : x \in [a, b] \end{cases}$$

Dann ist \tilde{f} messbar, da monoton wachsend. Und die Einschränkung $f|_{[a,b]}$, die bekanntlich auch messbar ist, ist genau f.

Funktionen beschränkter Schwankung

Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion beschränkter Schwankung, das heißt sie ist auf jedem abgeschlossenen Intervall [a,b] von beschränkter Schwankung. Dann kann sie nach der Jordan-Dekomposition als Differenz zweier monoton wachsender Funktionen geschrieben werden:

$$f=f_1-f_2 \ , \ f_1,f_2:$$
 monoton wach
send

wobei die f_1, f_2 jetzt nach obiger Überlegung messbar sind. Die Differenz zweier messbarer, reeller Funktionen ist auch wieder messbar. Somit ist f messbar.

Aufgabe 04

Zeigen: K_s ist eine kompakte Klasse

Seien
$$K_m = \bigcup_{k=1}^{n_m} A_{mk} \in \mathcal{K}_s, \ A_{mk} \in \mathcal{K}, \ k \leq n_m \text{ mit } \bigcap_{m \in \mathbb{N}} K_m = \emptyset, \text{ das heißt}$$

$$\emptyset = \bigcap_{m \in \mathbb{N}} \bigcup_{k=1}^{n_m} A_{mk}$$

Vorbetrachtung

Es sei

$$\Xi_M := \{1, ..., n_1\} \times \{1, ..., n_2\} \times \cdots \times \{1, ..., n_M\}$$

Ferner definieren wir

$$\Xi_{\infty} := \{1, ..., n_1\} \times \{1, ..., n_2\} \times ...$$

Für $M_1, M_2 \leq \infty$ und $\xi \in \Xi_{M_1}, \ \eta \in \Xi_{M_2}$ schreiben wir $\xi \subset \eta$ genau dann wenn:

$$M_1 \leq M_2 \land \forall m \leq M_1 : \xi_m = \eta_m$$

und sagen η ist eine **Fortsetzung** von ξ genau dann wenn $\xi \subset \eta$ ist.

Beweis durch Widerspruch

• Annahme:

$$\forall M \in \mathbb{N} : \bigcap_{m=1}^{M} K_m \neq \emptyset \text{ also } \exists x_M \in \bigcap_{m=1}^{M} K_m \rightarrow x_M \in K_m \ \forall \ m \leq M$$

das heißt für alle $M \in \mathbb{N}$:

$$\exists x_M, k \in \Xi_M : \forall m \leq M : x_M \in A_{mk_m} \text{ also } x_M \in \bigcap_{m=1}^M A_{mk_m} \neq \emptyset$$

• Sei für $M \in \mathbb{N}$ also $\underbrace{\Gamma_M}_{\neq \emptyset} \subset \Xi_M$ die Gesamtheit der M-Tupel $k \in \Xi_M$ die die Bedingung $\bigcap_{m=1}^M A_{mk_m} \neq \emptyset$ erfüllen und $\Lambda_M \subset \Xi_\infty$ die Menge aller Folgen $\xi \in \Xi_\infty$ für die gilt

$$\bigcap_{m=1}^{M} A_{m\xi_m} \neq \emptyset$$

Dann gilt:

$$\Lambda_{M+1} \subset \Lambda_M$$

denn für jedes $\xi \in \Lambda_{M+1}$ ist

$$\emptyset \neq \bigcap_{m=1}^{M+1} A_{m\xi_m} \subset \bigcap_{m=1}^{M} A_{m\xi_m} \to \xi \in \Lambda_M$$

Für jedes $\xi \in \Lambda_M$ gibt es jedoch ein $N_{\xi} \in \mathbb{N}$ mit

$$\bigcap_{m=1}^{N_{\xi}} A_{m\xi_m} = \emptyset$$

 $da \mathcal{K}$ kompakt, das heißt

$$\forall \ M \ \forall \ \xi \in \Lambda_M : \exists \ N_{\xi} > M : \xi \notin \Lambda_{N_{\xi}} \ \rightarrow \ \Lambda_{N_{\xi}} \subsetneq \Lambda_M$$

Doch da die Λ_N für alle $N \in \mathbb{N}$ nicht-leer sind, muss jedes Λ_M unendlich viele Folgen enthalten.

- Für ein beliebiges $\xi \in \Lambda_M$ muss per Konstruktion das Tupel k gebildet durch die ersten M Glieder von ξ natürlich in Γ_M liegen. Doch da Γ_M endlich ist, gibt es mindestens ein $k^M \in \Gamma_M$ mit $|\{\xi \in \Lambda_M : k \subset \xi\}| = \infty$.
- Induktive Konstruktion einer Folge η :
 - Induktionsanfang: Für M=1 wählen das entsprechende k^1 und setzen $\eta_1:=k_1^1$. Insbesondere gibt es dann unendlich viele $\xi\in\Lambda_1$ mit $k^1\subset\xi$
 - Induktionsannahme: Für festes $M \geq 1$ sei festgelegt k^M , so dass es unendlich viele $\xi \in \Lambda_M$ mit $k^M \subset \xi$ gibt.
 - Induktionsschritt: Da es nur n_{M+1} verschiedene Fortsetzungen von k^M auf Γ_{M+1} gibt, muss es mindestens eine Fortsetzung $k^{M+1} \in \Gamma_{M+1}$ von k^M geben mit,

$$\left|\left\{\xi \in \Lambda_{M+1} : k^{M+1} \subset \xi\right\}\right| = \infty$$

denn die ersten (M+1) Glieder eine jeden Folge $\xi \in \Lambda_M$ mit $k^M \subset \xi$ bilden natürlich Fortsetzungen von k^M . Somit ist auch k^{M+1} festgelegt.

Setzen nun für $m \in \mathbb{N} : \eta_m := k_m^m$

• Für die Folge η gilt offensichtlich $k^M \subset \eta \ \forall \ M \in \mathbb{N}$, denn

$$k_M^M = \eta_M \ \wedge \ \forall \ m < M : k^m \subset k^M \ \rightarrow \ \eta_m = k_m^m = k_m^M$$

und somit:

$$\forall \ M \in \mathbb{N} : \bigcap_{m=1}^{M} A_{m\eta_m} \stackrel{k^M \subset \eta}{=} \bigcap_{m=1}^{M} A_{mk_m^M} \stackrel{k^M \in \Gamma_M}{\neq} \emptyset$$

Doch dies ist ein Widerspruch zur Annahme dass die $\{A_{m\eta_m}\}_{m\in\mathbb{N}}$ in der kompakten Klasse \mathcal{K} liegen.

• Somit war die Annahme falsch, es gilt also:

$$\exists M \in \mathbb{N} : \bigcap_{m=1}^{M} K_m = \emptyset \quad \Box$$

Zeigen: \mathcal{K}_{δ} kompakte Klasse

Seien
$$K_m = \bigcap_{n \in \mathbb{N}} A_{mn} \in \mathcal{K}_{\delta}, \ A_{m,n+1} \subset A_{m,n} \in \mathcal{K}$$
 mit

$$\bigcap_{m\in\mathbb{N}} K_m = \bigcap_{m\in\mathbb{N}} \bigcap_{n\in\mathbb{N}} A_{mn} = \emptyset$$

Da die (abzählbar viele) $A_{mn} \in \mathcal{K}$ sind, und \mathcal{K} eine kompakte Klasse ist, gibt es eine <u>endliche</u> Indexmenge $I \subset \mathbb{N} \times \mathbb{N}$ (o.B.d.A $I \neq \emptyset$) so dass

$$\bigcap_{(m,n)\in I} A_{mn} = \emptyset$$

Wählen

$$m_0 := \max \{ m \mid \exists \ n \in \mathbb{N} : (m, n) \in I \} \ , \ n_0 := \max \{ n \mid \exists \ m \in \mathbb{N} : (m, n) \in I \}$$

Dann ist

$$I \subset \{1, ..., m_0\} \times \{1, ..., n_0\} \rightarrow \bigcap_{m=1}^{m_0} \bigcap_{n=1}^{n_0} A_{mn} \subset \bigcap_{(m,n) \in I} A_{mn} = \emptyset$$

Doch wegen $A_{m,n+1} \subset A_{m,n}$ ist

$$\bigcap_{n=1}^{n_0} A_{mn} \supset \bigcap_{n=1}^{\infty} A_{mn}$$

so dass schließlich folgt

$$\bigcap_{m=1}^{m_0} K_m = \bigcap_{m=1}^{m_0} \bigcap_{n=1}^{\infty} A_{mn} \subset \bigcap_{m=1}^{m_0} \bigcap_{n=1}^{n_0} A_{mn} \subset \emptyset \rightarrow \bigcap_{m=1}^{m_0} K_m = \emptyset$$

Somit ist auch \mathcal{K}_{δ} eine kompakte Klasse. \square

Zeigen: $\mathcal{K}_{\sigma\delta}$ ist eine kompakte Klasse

Es wurde gezeigt:

- Für eine beliebige kompakte Klasse \mathcal{K} über eine nicht-leere Menge M ist auch \mathcal{K}_s eine kompakte Klasse über M.
- Für eine beliebige kompakte Klasse $\mathcal K$ über eine nicht-leere Menge M ist auch $\mathcal K_\delta$ eine kompakte Klasse.

Somit ist auch $(\mathcal{K}_s)_{\delta} = \mathcal{K}_{s\delta}$ eine kompakte Klasse. Analog ist auch $\mathcal{K}_{\delta s}$ eine kompakte Klasse. \square