Lineare Algebra II

FSU Jena - SS 2008

Serie 11 - Lösungen

Stilianos Louca

12. Juli 2008

Notationen

• Für Punkte $a, b \in \mathbb{R}^n$ bezeichne

$$[a,b] := \{ta + (1-t)b : t \in [0,1]\}$$

• Für $a,b \in \mathbb{R}^n$ und $t \in \mathbb{R}$ bezeichne $S^t_{ab} := bt + (1-t)a$.

Aufgabe 01

Bemerkung: Für $A, B, E, O \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$ ist

$$\overline{OE} = \lambda \overline{OA} + (1 - \lambda) \overline{OB}$$

genau dann wenn

$$E = O + \overline{OE} = O + \lambda(A - O) + (1 - \lambda)(B - O) = \lambda A + (1 - \lambda)B = S_{AB}^{\lambda}$$

Zeigen: (i)⇒(ii)

Es sei E Extremalpunkt von K, das heißt es existiert keine Strecke in K so dass E in ihrem relativen Inneren liegt. Anders formuliert, es existieren keine $A \neq B \in K$, $t \in (0,1)$ mit $S_{AB}^t = E$. Ist also $E = S_{AB}^t$ für $A, B \in K$ und $t \in (0,1)$ so muss notwendigerweise A = B und somit E = tA + (1 - t)A = A sein.

Zeigen: (ii)⇒(iii)

Es gelte (ii). Seien also $A, B \in K \setminus \{E\}$ und $\lambda \in [0,1]$ beliebig. Für $\lambda \in \{0,1\}$ ist natürlich $S_{AB}^{\lambda} \in \{A,B\} \subset K \setminus \{E\}$. Für $\lambda \in (0,1)$ ist $S_{AB}^{\lambda} \neq E$, denn sonst wäre E=A was ein Widerspruch zur Wahl von A wäre. Außerdem ist $S_{AB}^{\lambda} \in K$ für $\lambda \in (0,1)$, da K konvex. Somit ist $S_{AB}^{\lambda} \in K \setminus \{E\}$, das heißt $K \setminus \{E\}$ ist konvex.

Zeigen: (iii)⇒(i)

Es sei $E \in K$, so dass $K \setminus \{E\}$ konvex ist, das heißt für $A, B \in K \setminus \{E\}$ ist auch $[A, B] \subset K \setminus \{E\}$. Existieren nun $A \neq B \in K$ mit $E = S_{AB}^t$ für ein geeignetes $t \in [0, 1]$, so muss gelten A = E oder B = E, denn sonst wäre $E \in [A, B] \subset K \setminus \{E\}$ ein Widerspruch. Doch das heißt es muss $t \in \{0, 1\}$ sein, also $t \notin (0, 1)$. Somit kann E nicht im relativen Inneren von [A, B] sein, und muss demnach ein Extremalpunkt von K sein.

ш

Aufgabe 02

Hilfsaussage 01

Für eine beliebige Menge $C \subset \mathbb{R}^n$ mit $\emptyset \neq C \neq \mathbb{R}^n$ ist $\partial C \neq \emptyset$.

Beweis: Wählen $x_1 \in C$, $x_2 \in C^c$ und nennen

$$T := \left\{ t \in [0, 1] : S_{x_1 x_2}^t \in C \right\}$$

Setzen $t_0 := \sup T$.

• Fall: $t_0 \in T$, das heißt $S^{t_0}_{x_1x_2} \in C$ und insbesondere $t_0 \in [0,1)$. Per Konstruktion von t_0 ist für jedes $0 < \varepsilon < 1 - t_0$:

$$t + \varepsilon \notin T \rightarrow S_{x_1 x_2}^{t_0 + \varepsilon} \in C^c$$

Da $S_{x_1x_2}^{()}$ stetig, das heißt $S_{x_1x_2}^{t_0+\varepsilon} \stackrel{\varepsilon \to 0}{\longrightarrow} S_{x_1x_2}^{t_0}$, ist $S_{x_1x_2}^{t_0}$ Häufungspunkt von C^c , also $S_{x_1x_2}^{t_0} \in \partial C$.

• Fall: $t_0 \notin T$ das heißt $S_{x_1x_2}^{t_0} \in C^c$. Per Konstruktion existiert jedoch eine Folge $(\tau_n) \subset T$ mit $\tau_n \uparrow t_0$ und somit $\underbrace{S_{x_1x_2}^{\tau_n}}_{CC} \overset{n \to \infty}{\longrightarrow} S_{x_1x_2}^{t_0}$, das heißt $S_{x_1x_2}^{t_0}$ ist Häufungspunkt von C und somit ebenfalls in ∂C .

Hilfsaussage 02

Für beliebige Menge $C \subset \mathbb{R}^n$ ist

$$\overline{C} \cap \overline{C^c} = \partial C$$

Beweis:

$$\overline{C} \cap \overline{C^c} = (C \cup \partial C) \cap (C^c \cap \underbrace{\partial C^c}_{\partial C}) = \underbrace{(C \cap C^c)}_{\emptyset} \cup \underbrace{(\partial C \cap \partial C)}_{\partial C} \cup \underbrace{(\partial C \cap C^c)}_{\subset \partial C} \cup \underbrace{(C \cap \partial C)}_{\subset \partial C} = \partial C$$

Bemerkung: Allgemein gilt $\partial \overline{C} = \partial C$ und $\partial \partial C = \partial C$.

Hilfsaussage 03

Für eine konvexe Menge $K \subset \mathbb{R}^n$ ist \overline{K} auch konvex.

Beweis: Für Elemente $x, y \in \overline{K}$ existieren per Definition Folgen $(x_n), (y_n) \subset K$ mit $x_n \to x, \ y_n \to y$. Für beliebiges $t \in [0, 1]$ ist dann

$$\underbrace{S_{x_n y_n}^t}_{\in K \subset \overline{K}} = t y_n + (1-t) x_n \overset{n \to \infty}{\longrightarrow} \underbrace{t y + (1-t) x}_{\in \overline{K}} = S_{xy}^t$$
da K konvex da \overline{K} abgeschlossen

Beweis der Aussage

Die Mengen K_1, K_2 sind offensichtlich komplementär, nennen also $K := K_1 \rightarrow K^c = K_2$. Dann gilt nach Hilfsaussage 02:

$$\overline{K} \cap \overline{K^c} = \partial K$$

Da $\emptyset \neq K \neq \mathbb{R}^n$ war, ist nach Hilfsaussage 01 $\partial K \neq \emptyset$. Wählen also $x_0 \in \partial K = \partial \overline{K}$. Da \overline{K} abgeschlossen und konvex ist, existiert eine die Menge \overline{K} , am Punkt x_0 stützende Hyperebene \mathcal{H} :

$$\mathcal{H} := \{ x \in \mathbb{R}^n : \langle l, x \rangle = c \}$$

mit $\langle l, x \rangle \leq c \ \forall \ x \in \overline{K} \supset K$, $\langle l, x_0 \rangle = c$. Nennen $\langle l, \cdot \rangle =: L$

• Behauptung: \mathcal{H} separiert K und K^c (schwach), das heißt $\langle l, y \rangle \geq c \ \forall \ y \in K^c$. Beweis durch Widerspruch: Es existiere ein $y_0 \in K^c$, $\delta > 0$ mit $\langle l, y_0 \rangle < c - \delta$. Dann eine Folge $\underbrace{x_n}_{\in K} \to x_0$ und es gilt für t > 1:

$$\left\langle l, S_{y_0 x_n}^t \right\rangle = \left\langle l, t x_n \right\rangle + \left\langle l, (1-t) y \right\rangle = t \underbrace{\left\langle l, x_0 \right\rangle}_c + t \left\langle l, x_n - x_0 \right\rangle + \underbrace{\left(1-t\right)}_{<0} \underbrace{\left\langle l, y_0 \right\rangle}_{$$

$$> tc + (1-t)(c-\delta) - tL(x_n - x_0) = c + (t-1)\delta - tL(x_n - x_0) \ \forall \ n$$

Da L stetig und L(0)=0 mit $x_n\to x_0$ ist, existiert z.B. für t=2 ein $n\in\mathbb{N}$ mit $2L(x_n-x_0)<\delta$ also:

$$\langle l, S_{u_0 x_n}^2 \rangle > c \implies y_1 := S_{u_0 x_n}^2 \in K^c$$

Da K^c konvex, muss $[y_0,y_1]\subset K^c$ sein. Doch offensichtlich ist $\underbrace{x_n}_{\in K}=S^{1/2}_{y_0y_1}\in [y_0,y_1]$ ein Widerspruch!

• Behauptung: $\partial K = \mathcal{H}$.

Beweis: Für $x \in \partial K$ (= ∂K^c) existieren Folgen $\underbrace{x_n}_{\in K} \to x$, $\underbrace{y_n}_{\in K^c} \to x$, das heißt

$$\underbrace{\langle l, x_n \rangle}_{\leq c} \rightarrow \langle l, x \rangle \ , \ \underbrace{\langle l, y_n \rangle}_{\geq c} \rightarrow \langle l, x \rangle \ \Rightarrow \ c \leq \langle l, x \rangle \leq c \ \Rightarrow \ \langle l, x \rangle = c$$

also $x \in \mathcal{H}$.

Sei nun $x \in \mathcal{H}$ also $\langle l, x \rangle = c$. Bekanntlich teilt \mathcal{H} den \mathbb{R}^n in zwei Halbräume R_1, R_2 so dass $\mathcal{H} = \partial R_1 = \partial R_2$, und es gibt natürlich Folgen $x_n \to x$, $y_n \to x$ so dass diese jeweils auf den beiden Seiten liegen:

$$\underbrace{\langle l, x_n \rangle < c}_{\Rightarrow x_n \notin K^c} , \underbrace{\langle l, y_n \rangle > c}_{\Rightarrow y_n \notin K}$$

Somit sind $x_n \in K$, $y_n \in K^c$, das heißt x ist Häufungspunkt von K und K^c , also $x \in \partial K$.

Somit ist

$$\overline{K_1} \cap \overline{K_2} = \partial K = \mathcal{H}$$

Variante: Alternativ kann man eine die beiden Mengen K_1, K_2 separierende Hyperebene wie folgt konstruieren: Mindestens eine der beiden Mengen hat ein Inneres, denn sonst wäre

$$\mathbb{R}^n = K_1 \cup K_2 = (K_1 \cup \partial K_1) = (\underbrace{\operatorname{int} K_1}_{\emptyset} \cup \partial K_1) \cup (\underbrace{\operatorname{int} K_2}_{\emptyset} \cup \partial K_2) = \partial K_1 \cup \partial K_2$$

und somit

$$\mathrm{int}\mathbb{R}^n=\mathrm{int}(\partial K_1\cup\partial K_2)=\underbrace{\mathrm{int}\partial K_1}_{\emptyset}\cup\underbrace{\mathrm{int}\partial K_2}_{\emptyset}=\emptyset$$

was natürlich nicht stimmt! Sei also o.B.d.A int $K_1 \neq \emptyset$. Dann ist $\underbrace{\operatorname{int} K_1}_{\neq \emptyset} \cap K_2 = \emptyset$. Da die beiden Mengen außerdem konvex sind, existiert nach Satz 28 eine Hyperebene $\mathcal H$ die K_1 und K_2 (schwach) separiert. \square

Aufgabe 04

Bezeichnung: Für $x, y \in \mathbb{R}^n$ sei $a_x := a(x)$ und $\overline{xy} := \overrightarrow{xy}$.

Voraussetzungen

Der Fall n=1 ist ausgeschlossen, denn: Die Bijektion $a(x)=x^3$ erhält die Geraden, da $a(\mathbb{R})=\mathbb{R}$. Da für x,y,z,w mit $\overline{xy}\neq 0\neq \overline{wz}$ stets

$$\widehat{xy}, \overline{zw} = \frac{(y-x)\cdot(w-z)}{\|y-x\|\cdot\|w-z\|} = \operatorname{sgn}(w-z)\cdot\operatorname{sgn}(y-x)$$

$$=\operatorname{sgn}(w^3-z^3)\cdot\operatorname{sgn}(y^3-x^2)=\operatorname{sgn}(a_w-z_z)\cdot\operatorname{sgn}(a_y-a_x)=\cos\widehat{a_xa_y},\widehat{a_za_w}$$

gilt, erhält a auch Winkel. Doch es ist zum Beispiel

$$||a_2 - a_1|| = ||8 - 1|| = 7 \cdot ||2 - 1||$$

jedoch

$$||a_3 - a_1|| = ||27 - 1|| = 13 \cdot ||3 - 1||$$

was ein Widerspruch zur Aussage ist. Es sei also $n \geq 2$.

Es ist zu zeigen: Es existiert eine Zahl k>0 so dass für Punkte $x,y\in\mathbb{R}^n$ gilt: $\|\overline{a_xa_y}\|=k\cdot\|\overline{xy}\|$. Dabei genügt es zu zeigen: Ist für zwei Punkte $x\neq y:\|\overline{a_xa_y}\|=k\cdot\|\overline{xy}\|$, k>0 so ist auch für $w\neq z:\|\overline{a_wa_z}\|=k\cdot\|\overline{wz}\|$. Denn dann können wir einfach 2 Punkte $x_0\neq y_0\in\mathbb{R}^n$ fest wählen.

Fall 1

Betrachten die nicht-kollinearen Punkte $y \neq x \neq z$, o.B.d.A $y \neq z$. Da a injektiv ist, ist $a_y \neq a_x \neq a_z \neq a_y$. Es gilt:

$$\begin{split} & \left\| \overline{xy} \right\|^2 \left\| \overline{yz} \right\|^2 - \left\langle \overline{xy}, \overline{yz} \right\rangle^2 = \left\langle x - y, x - y \right\rangle \left\langle y - z, y - z \right\rangle - \left\langle x - y, y - z \right\rangle^2 \\ & = \left[\left\| x \right\|^2 + \left\| y \right\|^2 - 2 \left\langle x, y \right\rangle \right] \cdot \left[\left\| y \right\|^2 + \left\| z \right\|^2 - 2 \left\langle z, y \right\rangle \right] - \left[\left\langle x, y \right\rangle - \left\| y \right\|^2 - \left\langle x, z \right\rangle + \left\langle y, z \right\rangle \right]^2 \\ & = \left\| x \right\|^2 \left\| y \right\|^2 + \left\| x \right\|^2 \left\| z \right\|^2 + \left\| y \right\|^2 \left\| z \right\|^2 - \left\langle x, y \right\rangle^2 - \left\langle x, z \right\rangle^2 - \left\langle y, z \right\rangle^2 - 2 \left\| x \right\|^2 \left\langle y, z \right\rangle - 2 \left\| z \right\|^2 \left\langle x, y \right\rangle - 2 \left\| y \right\|^2 \left\langle x, z \right\rangle \\ & + 2 \left\langle x, y \right\rangle \left\langle z, y \right\rangle + 2 \left\langle x, z \right\rangle \left\langle y, z \right\rangle + 2 \left\langle x, y \right\rangle \left\langle x, z \right\rangle \overset{\text{Analog}}{=} \left\| \overline{xz} \right\|^2 \left\| \overline{zy} \right\|^2 - \left\langle \overline{xz}, \overline{zy} \right\rangle^2 \end{split}$$

und somit

$$\left\|\overline{xy}\right\|^{2} \cdot \left[1 - \frac{\langle \overline{xy}, \overline{yz}\rangle^{2}}{\left\|\overline{xy}\right\|^{2} \left\|\overline{yz}\right\|^{2}}\right] = \frac{\left\|\overline{xy}\right\|^{2} \left\|\overline{yz}\right\|^{2} - \langle \overline{xy}, \overline{yz}\rangle^{2}}{\left\|yz\right\|^{2}} = \frac{\left\|\overline{xz}\right\|^{2} \left\|\overline{zy}\right\|^{2} - \langle \overline{xz}, \overline{zy}\rangle^{2}}{\left\|zy\right\|^{2}} = \left\|xz\right\|^{2} \cdot \left[1 - \frac{\langle \overline{xz}, \overline{zy}\rangle^{2}}{\left\|xz\right\|^{2} \left\|zy\right\|^{2}}\right]$$

$$\Rightarrow \|\overline{xy}\| \cdot \sqrt{1 - \cos^2(\widehat{xyz})} = \|\overline{xz}\| \cdot \sqrt{1 - \cos^2(\widehat{xzy})}$$

Da die Punkte x, y, z beliebig waren, muss das gleiche auch für a_x, a_y, a_z gelten, das heißt

$$\underbrace{\|\overline{a_x a_y}\|}_{k \cdot \|\overline{xy}\|} \cdot \underbrace{\sqrt{1 - \cos^2\left(\widehat{a_x a_y a_z}\right)}}_{\text{da a Winkeltreu}} = \|\overline{a_x a_z}\| \cdot \underbrace{\sqrt{1 - \cos^2\left(\widehat{a_x a_z a_y}\right)}}_{\text{da a Winkeltreu}}$$

Da x, y, z nicht kollinear sind, ist bekanntlich $\cos(\widehat{xzy}) \in (-1, 1)$ das heißt $\sqrt{1 - \cos^2(\widehat{xzy})} \neq 0$. Somit folgt

$$\|\overline{a_x a_z}\| = k \cdot \|\overline{xz}\|$$

Anschaulich: Für zwei Dreiecke $xy^{\triangle}z$, $a_xa_y^{\triangle}a_z$ mit gleichen entsprechenden Winkeln (\rightarrow ähnlich) ist bekanntlich das jeweilige Verhältnis zweier entsprechenden Seiten für alle 3 Paare gleich.

Fall 2

Betrachten die kollinearen Punkte $y \neq x \neq z$ (das heißt \overline{xy} , \overline{xz} linear abhängig) mit $\|\overline{a_x a_y}\| = k \cdot \|\overline{xy}\|$, k > 0. Dann wählen einen Punkt w so dass \overline{xw} und \overline{xy} linear unabhängig sind (möglich, da $n \geq 2$). Dann gilt nach Fall 1: $\|\overline{a_x a_w}\| = k \cdot \|\overline{xw}\|$. Da auch \overline{xw} , \overline{xz} linear unabhängig sind, gilt dann auch $\|\overline{a_x a_z}\| = k \cdot \|\overline{xz}\|$.

Fall 3

Seien nun $x \neq y$, $z \neq w$ mit $\|\overline{a_x a_y}\| = k \cdot \|\overline{xy}\|$, k > 0. Dabei sei $x \neq w$ (der Fall x = w entspricht Fall 01 und 02). Dann ist nach Fall 01 und 02: $\|\overline{a_x a_w}\| = k \cdot \|\overline{xw}\|$ und analog (Fall 01 & 02: $x \neq w \neq z$):

$$\|\overline{a_w a_z}\| = k \cdot \|\overline{wz}\|$$