11. Übungsserie zur Vorlesung "Lineare Algebra und Analytische Geometrie II"

Sommersemester 2008, Prof. V. Matveev

Aufgabe 1 (3 Punkte)

Es sei $K \subseteq \mathbb{R}^n$ konvex.

Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (i) E ist Extremalpunkt von K.
- (ii) Falls $\overrightarrow{OE} = \lambda \overrightarrow{OA} + (1 \lambda) \overrightarrow{OB}$ für gewisse $A, B \in K$ und ein $0 < \lambda < 1$, so folgt E = A = B.
- (iii) $K \setminus \{E\}$ ist wieder konvex.

Aufgabe 2 (4 Punkte)

Es seien K_1 und K_2 zwei nichtleere konvexe Teilmengen des \mathbb{R}^n mit

$$K_1 \cup K_2 = \mathbb{R}^n$$
 und $K_1 \cap K_2 = \emptyset$.

Zeigen Sie: Dann ist $\overline{K_1} \cap \overline{K_2}$ eine Hyperebene des \mathbb{R}^n .

Aufgabe 3 (6 Punkte)

Zeigen Sie, dass folgende Aussagen äquivalent sind:

- (i) Das Auswahlaxiom.
- (ii) Sind A und B zwei Mengen, so existiert eine injektive Abbildung $f:A\longrightarrow B$ oder eine injektive Abbildung $g:B\longrightarrow A$. (Daraus folgt dass die Menge von Kardinalzahlen geordnet ist)
- (iii) Für eine unendliche Menge A gilt: $|A \times A| = |A|$.

Aufgabe 4 (3 Punkte)

Zeigen Sie, dass eine Winkel- und Geradentreu Bijektion $a: \mathbb{R}^n \to \mathbb{R}^n$ eine Ähnlichkeitstransformation ist.