4. Übungsserie zur Vorlesung "Lineare Algebra und Analytische Geometrie II"

Sommersemester 2008, Prof. V. Matveev

Aufgabe 1 (2+2 Punkte)

Eine Matrix A heißt normal, falls $A^*A = AA^*$ ist, wobei $A^* := \overline{A^T}$ die zu A konjugierttransponierte Matrix bezeichnet.

- (a) Beweisen Sie unter Zuhilfenahme der Jordan-Normalform, dass normale Matrizen diagonalisierbar sind.
- (b) Folgern Sie daraus, dass alle Matrizen der folgenden Familien über C diagonalisierbar sind:
 - orthogonale Matrizen, d. h. reelle Matrizen R mit $R^TR = \text{Id}$
 - (anti)symmetrische Matrizen, d. h. reelle Matrizen A mit $A^T = A$ ($A^T = -A$)
 - \bullet unitäre Matrizen, d. h. komplexe Matrizen U mit $U^*U=\mathrm{Id}$
 - (anti)hermitesche Matrizen, d. h. komplexe Matrizen A mit $A^* = A$ ($A^* = -A$)

Aufgabe 2 (2+2 Punkte)

- (a) Beweisen Sie, dass die Jordan-Normalform einer 3×3 -Matrix eindeutig durch ihr charakteristisches sowie ihr Minimalpolynom bestimmt ist.
- (b) Geben Sie ohne explizite Berechnung der Eigenvektoren eine Jordan-Normalform der folgenden beiden Matrizen an:

$$\begin{pmatrix} 0 & 3 & -1 \\ 0 & 1 & 0 \\ -1 & 3 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$

Aufgabe 3 (2+2 Punkte)

- (a) Zeigen Sie, dass jeder (komplexe) Eigenwert einer orthogonalen Matrix den Betrag 1 hat.
 - *Hinweis:* Betrachten Sie die Zahl v^*v für einen (komplexen) Eigenvektor v.
- (b) Benutzen Sie (a), um zu beweisen, dass jede orthogonale Matrix ähnlich zu einer blockdiagonalen Matrix ist, deren Blöcke von folgender Gestalt sind:

(±1) bzw.
$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
 mit $\varphi \in]0, 2\pi[$.

Hinweis: Verwenden Sie Satz 5 aus der Vorlesung.

Aufgabe 4 (4 Punkte)

Zeigen Sie: Summen und Produkte kommutierender nilpotenter Matrizen sind nilpotent. Geben Sie je zwei nilpotente Matrizen an, deren Summe bzw. Produkt nicht nilpotent ist.