Lineare Algebra II FSU Jena - SS 2007 Übungsblatt 03 - Lösungen

Stilianos Louca

27. März 2008

Aufgabe 01

a) Für [a] = [2] gilt

$$[a] \cdot [4] = [a \cdot 4] = [8] = [2]$$

Ferner ist

$$[0] \cdot [2] = [0 \cdot 2] = [0] \; , \; [1] \cdot [2] = [2] \; , \; [2] \cdot [2] = [4] \; , \; [3] \cdot [2] = [6] = [0] \; , \; [4] \cdot [2] = [8] = [2] \; , \; [5] \cdot [2] = [10] = [4]$$

Man sieht dass kein $[b] \in \mathbb{Z}/6$ existiert mit $[b] \cdot [2] = [1]$.

b) **Bemerkung:** Es ist $[0] \in \mathbb{Z}/6$ das Nullelement.

Verwenden die Darstellungsformel für Determinanten über kommutative Ringe

$$\det(A) = \sum_{p \in S_n} \chi(p) \cdot \prod_{i=1}^n A_{ip(i)}$$

und schreiben

$$\det{(A)} = [2][3][1] + [1][2][1] - [2][2][1] - [1][1][3] = [2 \cdot 3 \cdot 1] + [1 \cdot 2 \cdot 1] - [2 \cdot 2 \cdot 1] - [1 \cdot 1 \cdot 3]$$

$$= [6] + [2] - [4] - [3] = [0] + [2] + [2] + [3] = [2 + 2 + 3] = [7] = [1]$$

$$\det{(B)} = [2][3][1] + [1][2][1] - [2][2][2] - [1][1][3] = [0] + [2] - \underbrace{[8]}_{[2]} - [3] = [3]$$

$$\operatorname{adj}(A) = \left((-1)^{i+j} \det \tilde{A}(i,j) \right) = \left(\begin{array}{cc} -[1][3] & -[2][1] + [1][1] & [2][3] \\ -[2][1] + [3][1] & [1][1] - [1][1] & -[1][3] + [2][1] \\ [2][1] & -[1][1] + [1][2] & -[2][2] \end{array} \right) = \left(\begin{array}{cc} [3] & [5] & [0] \\ [1] & [0] & [5] \\ [2] & [1] & [2] \end{array} \right)$$

$$\operatorname{adj}(B) = \begin{pmatrix} -[1][3] & -[2][2] + [1][1] & [2][3] \\ -[2][2] + [3][1] & [1][2] - [1][1] & -[1][3] + [1][2] \end{pmatrix} = \begin{pmatrix} [3] & [3] & [0] \\ [5] & [1] & [5] \\ [2] & [1] & [2] \end{pmatrix}$$

Bemerkung: Da $[\cdot]$ einen Homomorphismus bzgl. + und \cdot darstellt, gilt:

$$[a] \cdot [b] + [c] \cdot [d] = [ab + cd]$$

und ferner

$$\det([A_{ij}]) = [\det(A_{ij})]$$

Somit ergeben sich die Determinanten von A und B ganz leicht als

$$\det(A) = \det \begin{pmatrix} \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 2 \end{bmatrix} & \begin{bmatrix} 1 \end{bmatrix} \\ \begin{bmatrix} 2 \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} 3 \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 1 \end{bmatrix} & \begin{bmatrix} 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\det(B) = [-3] = -[3] = [3]$$

c) Eine Matrix $A \in M_n(\mathbb{Z}/6)$ ist genau dann invertierbar wenn det (A) invertierbar ist, d.h

$$\exists \ r \in \mathbb{Z}/6 : r \det(A) = [1]$$

Für A ist dies der Fall, mit r = [1] so dass A invertierbar ist. Dagegen gibt es kein $[a] \in \mathbb{Z}/6$ mit [a][3] = [1], denn sonst wäre für ein geeignetes $r \in \mathbb{Z}$:

$$3a = 6r + 1 \rightarrow a = \underbrace{2r}_{\in \mathbb{Z}} + \underbrace{\frac{1}{3}}_{d\mathbb{Z}} \in \mathbb{Z}$$

was ein Widerspruch ist! Somit ist B nicht invertierbar!

Die inverse Matrix von A ergibt sich als

$$A^{-1} = [1] \cdot \operatorname{adj}(A) = \operatorname{adj}(A)$$

d) Lösen das Gleichungssystem

$$\begin{pmatrix} [1] & [2] & [1] \\ [2] & [0] & [1] \\ [1] & [3] & [2] \end{pmatrix} \cdot \begin{pmatrix} [a_1] \\ [a_2] \\ [a_3] \end{pmatrix} = 0$$

mit einer Variation des Gauss-Jordan Verfahrens und bekommen eine Lösung

$$([a_1], [a_2], [a_3]) = ([2], [4], [2])$$

d.h

$$[2] \cdot \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix} \end{pmatrix} + [4] \cdot \begin{pmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 3 \end{bmatrix} \end{pmatrix} + [2] \cdot \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 2 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix}$$

Aufgabe 02

a) Berechnen das charakteristische Polynom p_A der Matrix A

$$p_A(X) = \det(XI_2 - A) = \det\begin{pmatrix} X & -1 \\ & & \\ -1 & X - 1 \end{pmatrix} = X(X - 1) - 1 = X^2 - X - 1$$

untersuchen seine Werte in \mathbb{F}_2 :

$$p_A(0) = -1 = 1$$
, $p_A(1) = 1^2 - 1 - 1 = -1 = 1$

und sehen dass p_A dort keine Nullstellen hat. Somit besitzt $A \in M_2(\mathbb{F}_2)$ keine Eigenwerte!

b) Betrachten wir $A \in M_2(\mathbb{F}_4)$ so sind sowohl $X = \omega$ als auch $X = \omega + 1$ Nullstellen von p_A :

$$p_A(\omega) = \omega^2 - \omega + 1 = \omega + 1 - \omega - 1 = 0$$

$$p_A(\omega + 1) = (\omega + 1)^2 - (\omega + 1) - 1 = \underbrace{\omega^2}_{\omega + 1} + 1 + \omega + \omega - \omega - 1 - 1 = \omega + \omega = 0$$

Somit besitzt A zwei linear unabhängige, den Eigenwerten $\omega, \omega + 1$ entsprechende, Eigenvektoren die \mathbb{F}_4^2 aufspannen und somit eine Basis bilden. Demnach ist $A \in M_2(\mathbb{F}_4)$ diagonalisierbar.

c) Um die zwei Eigenvektoren zu finden lösen wir die linearen Gleichungssysteme

$$(\omega I - A) \cdot \vec{x}_1 = \begin{pmatrix} \omega & -1 \\ -1 & \omega - 1 \end{pmatrix} \cdot \vec{x}_1 = 0$$

$$[(\omega+1)I - A] \cdot \vec{x}_1 = \begin{pmatrix} \omega+1 & -1 \\ & & \\ -1 & \omega \end{pmatrix} \cdot \vec{x}_2 = 0$$

und bekommen

$$\vec{x}_1 = \left(\begin{array}{c} \omega + 1 \\ 1 \end{array} \right) , \ \vec{x}_2 = \left(\begin{array}{c} \omega \\ 1 \end{array} \right)$$

Die Eigenvektoren \vec{x}_1, \vec{x}_2 bilden eine Basis von \mathbb{F}_4^2 .

Aufgabe 03

a) Nennen

$$F := \{ v \in k^n \mid f(A) \cdot v = 0 \} , G := \{ g(A) \cdot v \mid v \in k^n \}$$

und zeigen $G \subset F$: Sei $u \in G$.

$$u = g(A)v \in G \implies f(A)u = f(A)g(A)v = p_A(A)v = 0 \implies u \in F$$

Zeigen andersrum $F \subset G$: Sei $u \in F$.

$$ggT(f,g) = 1 \rightarrow \exists p, q \in k[X] : pf + qg = 1 \rightarrow (pf)(A) = I_n - (qg)(A)$$

$$\rightarrow 0 = p(A)\underbrace{f(A)u}_{0} = I_{n}u - q(A)g(A)u = u - g(A)\left[q(A)u\right] \rightarrow u = g(A)\underbrace{\left[q(A)u\right]}_{v} \in G$$

b) Nennen

$$F := \{ v \in k^n \mid f(A)v = 0 \}$$
, $G := \{ v \in k^n \mid g(A)v = 0 \}$

und zeigen zuerst dass F,G Untervektorräume von k^n sind: Seien $u,v\in F$ und $\lambda\in k$.

$$f(A)\left[\lambda u+v\right] = \underbrace{\lambda f(A)u}_0 + \underbrace{f(A)v}_0 = 0 \ \to \ \lambda u+v \in F$$

$$f(A)$$
 linear $\rightarrow f(A)0 = 0 \rightarrow 0 \in F$

Analog auch für G.

Zeigen jetzt dass $F \cap G = \{0\}$ ist. Sei $v \in F \cap G$.

$$\rightarrow f(A)v = 0 = g(A)v$$

Doch:
$$\exists p, q \in k[X]: pf + qg = 1 \rightarrow p(A)f(A) + q(A)g(A) = I_n$$

$$\rightarrow 0 = p(A) \underbrace{f(A)v}_{0} + q(A) \underbrace{g(A)v}_{0} = I_{n}v = v \rightarrow v = 0$$

Somit ist F + G eine direkte Summe: $F \oplus G$.

Zeigen jetzt: $F \oplus G = k^n$. Da f(A) und g(A) Endomorphismen in k^n sind, gelten die Dimensionsformeln

$$\dim(\ker \operatorname{ld} f(A)) + \dim(\operatorname{limage} f(A)) = \dim k^n = n$$

$$\dim(\ker \operatorname{leg}(A)) + \dim(\operatorname{image} g(A)) = n$$

In Teil (a) wurde gezeigt

$$F = \operatorname{kernel} f(A) = \operatorname{image} g(A)$$

Analog gilt auch

$$G = \text{kernel } g(A) = \text{image } f(A)$$

da f, g gleichbedeutend sind. Somit ist

$$\dim F + \dim G = \dim(\operatorname{image} g(A)) + \dim(\operatorname{image} f(A)) = [n - \dim G] + [n - \dim G]$$

$$\rightarrow \dim F + \dim G = n \rightarrow F \oplus G = k^n \square$$

Zusatzaufgabe

Sei \mathbb{K} ein Körper und $0 \neq f \in \mathbb{K}[X]$ ein Polynom, mit

$$f(X) = \lambda \cdot \prod_{i=1}^{n} (X - a_i) , a_1, ..., a_n \in \mathbb{K} , n \in \mathbb{N}_0$$

Sei $g \mid f$ ein normiertes Polynom. Zeigen Sie: g kann als Produkt linearer Faktoren geschrieben werden:

$$g(X) = \prod_{i=1}^{k} (X - b_i) , b_1, ..., b_k \in \mathbb{K} , k \in \mathbb{N}_0$$

 $mit \{a_1, ..., a_n\} \in \{b_1, ..., b_n\}.$

Beweis:

Nennen $\mathcal{L}(f,a)$ die (eindeutig bestimmte) Vielfachheit von a als Nullstelle in f.

Fall: grad $g = 0 \rightarrow g \equiv 1, k = 0.$

Fall: grad $g \ge 1$. Annahme: g kann nicht als Produkt linearer Faktoren geschrieben werden, d.h es ist $g = \tilde{g}h$ für geeignete $\tilde{g}, h \in \mathbb{K}[X]$ wobei h keine Nullstellen in \mathbb{K} hat, mit grad $h \ge 1$.

Wegen $h \mid g \mid f$ ist auch $h \mid f$, $f = \tilde{h}h$. Seien $\{\alpha_1, ..., \alpha_m\} = \{a_1, ..., a_n\}$ die Nullstelen von f mit jeweils der Vielfachheit $\mathcal{L}(f, \alpha_1), ..., \mathcal{L}(f, \alpha_m)$:

$$\sum_{i=1}^{m} \mathcal{L}(f, \alpha_i) = n$$

Da h allgemein keine Nullstellen besitzt, ist insbesondere

$$\mathcal{L}(h,\alpha_i) = 0 \ \forall \ i = 1,..,m$$

Da die Vielfachheit $\mathcal{L}(f,\alpha_i)$ jeder Nullstelle eindeutig für f ist, folgt

$$\mathcal{L}(f,\alpha_i) = \mathcal{L}(\tilde{h} \cdot h,\alpha_i) = \mathcal{L}(\tilde{h},\alpha_i) + \underbrace{\mathcal{L}(h,\alpha_i)}_{0} = \mathcal{L}(\tilde{h},\alpha_i)$$

$$\rightarrow n = \sum_{i=1}^{m} \mathcal{L}(f, \alpha_i) = \sum_{i=1}^{m} \mathcal{L}(\tilde{h}, \alpha_i) \rightarrow \operatorname{grad} \tilde{h} = n$$

$$\rightarrow \operatorname{grad} h = n - \underbrace{\operatorname{grad} \tilde{h}}_n = 0$$

was ein Widerspruch ist! \square