Versuch 204

Dampfdruckkurve und Verdampfungswärme

Aufgaben

- 1. Bestimmen des Dampfdruckes einer gegebenen Flüssigkeit unter Berücksichtigung der durch die Temperatur verursachten systematischen Fehler.
- 2. Bestimmen der molaren Verdampfungswärme.

Grundlagen

Der Phasenübergang zwischen flüssig und gasförmig findet in einem geschlossenen System kontinuierlich in beide Richtungen statt: Während einer Zeiteinheit verdunstet eine Flüssigkeitsmenge m_{fl} und geht in Gas über. Gleichzeitig aber kondensiert ebenso eine Gasmenge m_{g} und geht in Flüssigkeit über. Bei konstanter Temperatur stellt sich nach einer gewissen Zeit ein Gleichgewicht ein. Dann kann man das Gas durch seinen Druck p_{D} charakterisieren.

Also ist p_D vom Stoff und von der Temperatur abhängig. Dies geht aus der Clausius- Clapeyronschen Gleichung hervor:

$$Q_{v} = T \frac{\partial p_{D}}{\partial T} (v_{G} - v_{Fl})$$

wobei Q_v die molare Verdampfungswärme und v die molaren Volumina sind. Dabei kann man v_{Fl} gegenüber v_G vernachlässigen und aus der Zustandsgleichung des idealen Gases:

$$\frac{p_D V_D}{T} = v \cdot R$$

$$\frac{V_D}{V} = V_G = \frac{T \cdot R}{p_D}$$

zu folgender Gleichung kommen:

$$Q_{v} = \frac{T^{2} \cdot R}{p_{D}} \cdot \frac{\partial p_{D}}{\partial T}$$

Das ordnen wir noch ein wenig, damit es schön aussieht, und führen dann die Integration aus:

$$Q_{v} \frac{1}{T^2} dT = \frac{R}{p_D} dp_D$$

$$-Q_{v}\frac{1}{T}+C=R\ln p_{D}$$

$$\ln \frac{p_D}{p_0} = -\frac{Q_v}{RT}$$

Mit den Höhen eines Quecksilbermanometers geschrieben ergibt sich:

$$\ln \frac{h_L + \Delta h}{h_0} = -\frac{Q_v}{RT}$$

Da sich die Säule aber abhängig von der Temperatur ausdehnt mit

$$h_{mess} = h_{norm} \cdot \left(1 + 3\alpha_{Hg} \Delta T\right)$$

$$h_{norm} = h_{mess} \cdot \left(1 - 3\alpha_{Hg} \Delta T\right)$$

ergibt sich zur Korrektur

$$\ln \frac{h_L \cdot (1 - 3\alpha\Delta T_{Raum}) + \Delta h \cdot (1 - 3\alpha\Delta T_{Versuch})}{h_0} = -\frac{Q_v}{RT}$$

Versuchsprotokolle

Durchführung

Versuchsobjekt:

Stoffprobe in rechter Versuchsapparatur (Heizeinheit, Umwälzpumpe, Manometer)

mögliche systematische Fehler:

- 1. unbeachtete Luftdruckänderungen
- 2. Abweichungen vom Charakter des Idealen Gases bei Prozessen mit Phasenübergängen
- 3. Ausdehnung des Quecksilbers und des Manometers
- 4. Q_v wird über alle Temperaturen als annähernd konstant angenommen

erwartetes Ergebnis:

$$C_v \approx 35 \frac{kJ}{mol}$$

Versuchsablauf:

- Aufnahme der Umweltbedingungen
- Messwertaufnahme an der Versuchsapparatur bei steigender Temperatur

Fehlerquellen:

$$\Delta h, \Delta T$$

Messwerte

Umgebung

Zeit Luftdruck
$$14:^{45}$$
 749 thorr $15:^{00}$ 748 thorr $15:^{15}$ 748 thorr $15:^{30}$ 748 thorr $15:^{45}$ 748 thorr $T_{Raum} = 22.5^{\circ}C$

aufgenommene Messwerte

Auswertung

Korrektur der Messwerte

T [°C]	24,6	30	35	40,1	45	50	54	58	63	66	68	70	72	74	76	78	80
h ₁ [mm]	104	109	118	132	151	174	200	228	268	294	318	342	359	384	416	440	472
h ₂ [mm]	786	782	776	760	742	720	698	664	624	598	576	552	534	510	479	454	422
Δh [mm]	-682	-673	-658	-628	-591	-546	-498	-436	-356	-304	-258	-210	-175	-126	-63	-14	50
Δh_{kor} [mm]	-672,6	-661,7	-645,1	-613,9	-576,1	-530,7	-482,9	-421,8	-343,4	-292,7	-248,2	-201,8	-167,9	-120,8	-60,3	-13,4	47,8
h _{L (kor)} [mm]	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6	738,6
Δh_{PD} [mm]	66,0	76,9	93,5	124,7	162,5	207,9	255,6	316,7	395,1	445,8	490,4	536,8	570,6	617,8	678,2	725,2	786,3

Versuchsnummer: 204

Berechnung

Aus der Gleichung unter der Voraussetzung einer Temperaturkonstanz von Q_v

$$\ln \frac{h_L \cdot (1 - 3\alpha \Delta T_{Raum}) + \Delta h \cdot (1 - 3\alpha \Delta T_{Versuch})}{h_0} = -\frac{Q_v}{RT}$$

folgt über den Vergleich mit einer linearen Funktion, dass

$$-\frac{Q_{v}}{R} = \frac{\ln \frac{h_{P_{D}1}}{h_{0}} - \ln \frac{h_{P_{D}2}}{h_{0}}}{\frac{1}{T_{1}} - \frac{1}{T_{2}}}$$

gilt.

$$Q_{v} = R \cdot \ln \frac{h_{P_{D}1}}{h_{P_{D}2}} \cdot \frac{T_{1}T_{2}}{T_{1} - T_{2}}$$

$$\Delta Q_{v} = Q_{v} \cdot \left(\Delta T \frac{(T_{1} + T_{2})(T_{1} - T_{2}) - 2T_{1} \cdot T_{2}}{T_{1} \cdot T_{2} \cdot (T_{1} - T_{2})} + \frac{1}{\ln \frac{h_{P_{D}1}}{h_{P_{D}2}}} \cdot \left(\frac{\Delta h_{P_{D}1}}{h_{P_{D}1}} + \frac{\Delta h_{P_{D}2}}{h_{P_{D}2}} \right) \right)$$

Mit den Werten aus dem Diagramm II.2:

$$h_{P_{D}1} = 60mm$$
 $\Delta h_{P_{D}1} = 20mm$ $\Delta h_{P_{D}1} = 20mm$ $\Delta h_{P_{D}2} = 100mm$ $T_{1} = 297,75K$ $\Delta T_{1} = 0,1K$

Ergebnisse

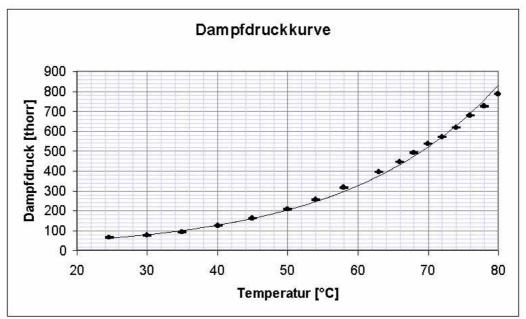


ABB I.1: Die aufgenommene Dampfdruckkurve abgetragen über der Temperatur (korrigiert).

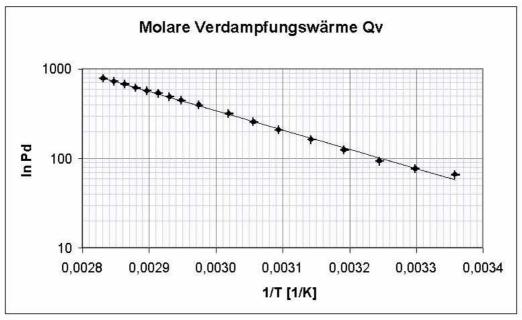


ABB I.2: Die mol. Verdampfungswärme im logarithmischen- reziproportionalen Abtrag (korrigiert und linear genähert).

$$C_{v} = (18,00 \pm 8,79) \frac{kJ}{mol}$$

Diskussion

Der Vergleich mit den erwarteten Werten zeigt, dass das erwartete Ergebnis nicht erreicht werden konnte. Scheinbar sind sämtliche Messwerte systematisch nach unten verfälscht, da die Messwertstruktur der erwarteten entspricht (lin. Anstieg über logarithmisch- reziproportionalen Abtrag, exponentieller Anstieg des Verdampfungsdruckes). Grund dafür können einerseits die theoretisch provozierten systematischen Fehler (Annahme, das Gasgemisch verhält sich wie ein Ideales Gas), andererseits systematische Fehler in der Praktischendurchführung sein. So ist durchaus denkbar, dass bei der quasistatischen Methode (um den Temperaturabfall durch Wärmeaustausch mit der Umgebungsluft zuvorzukommen) die Messwerte zu früh aufgenommen wurden, was natürlich konsequent zu niedrige Werte lieferte.

Um diesen systematischen Fehler möglichst zu eliminieren, wäre eine weitere Korrektur-Messung bei 80°C angebracht. In diesem Zustand bewerte ich die Ergebnisse der Messreihe als nicht erfolgreich. Die vortestierten Messwerte sind im Anhang zu finden.

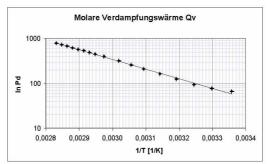
Jena, 19.05.2002

Versuch 204

Nachtrag/ Nachbesserung

Auswertung

Berechnung


$$Q_{v} = R \cdot \ln \frac{h_{P_{D}1}}{h_{P_{D}2}} \cdot \frac{T_{1}T_{2}}{T_{1} - T_{2}}$$

$$\Delta Q_{v} = Q_{v} \cdot \left(\Delta T \frac{(T_{1} + T_{2})(T_{1} - T_{2}) - 2T_{1} \cdot T_{2}}{T_{1} \cdot T_{2} \cdot (T_{1} - T_{2})} + \frac{1}{\left| \ln \frac{h_{P_{D}1}}{h_{P_{D}2}} \right|} \cdot \left(\frac{\Delta h_{P_{D}1}}{h_{P_{D}1}} + \frac{\Delta h_{P_{D}2}}{h_{P_{D}2}} \right) \right)$$

Mit den Werten aus dem Diagramm:

$$h_{P_{D}1} = 60mm$$

$$\Delta h_{P_{D}1} = 20mm$$

$$\Delta h_{P_{D}2} = 830mm$$

$$\Delta h_{P_{D}2} = 100mm$$

$$\Delta h_{P_{D}2} = 100mm$$

$$\Delta T_{1} = 0.1K$$

Ergebnisse

(größere Abbildung, siehe oben)

$$C_v = (41,46 \pm 6,97) \frac{kJ}{mol}$$

Diskussion

Mit den korrigierten Ergebnissen habe ich an den Messreihen nichts mehr auszusetzen. Das Ergebnis deckt sich hervorragend mit dem gegebenen Wert von C_2H_5OH mit

$$C_v(78^{\circ}C) = 38.6 \frac{kJ}{mol}$$

$$C_v(25^{\circ}C) = 42.3 \frac{kJ}{mol}$$

Der Fehler in der Auswertung oben lag einig und allein in der systematischen Fehlbedienung des Taschenrechners ("log" statt "ln" benutzt.) .

Jena, 25.05.2002

		Ralf Erlebach
-		

Versuchsnummer: 204 Nachtrag

Physikalisches Grundpraktikum