GR: Problem Set #12

1. (Carroll, Problem 7.4.) Show that the Lorenz gauge condition, $\partial_{\mu}\bar{h}^{\mu\nu} = 0$ is equivalent to the **harmonic gauge** condition. This gauge is defined by

 $\Box x^{\mu} = 0,$

where each coordinate x^{μ} is thought of as a scalar function on spacetime. (Any function satisfying $\Box f = 0$ is known as an "harmonic function".)

- 2. (Carroll, Problem 7.6.) Two objects of mass M have a head-on collision at event (0, 0, 0, 0). In the distant past, $t \to -\infty$, the masses started at $x \to \pm \infty$ with zero velocity.
 - (a) Using Newtonian theory, show that $x(t) = \pm (9Mt^2/8)^{1/3}$.
 - (b) For what separations is the Newtonian approximation reasonable?
 - (c) Calculate $h_{xx}^{TT}(t)$ at (x, y, z) = (0, R, 0).
- 3. In the linearized gravitational theory, show that the equations of motion for matter $T^{\mu\nu}{}_{;\nu} = 0$ are inconsistent with the field equations for the metric perturbation. Show that this inconsistency is of second order in the metric perturbation, hence negligible to first order.

Milton Ruiz, milton.ruiz@uni-jena.de