General Theory of Relativity
 FSU Jena - WS 2009/2010
 Problem set 12 - Solutions

Stilianos Louca
February 19, 2010

Problem 01

Starting with

$$
g_{\alpha \beta}=\eta_{\alpha \beta}+h_{\alpha \beta} \quad, \quad g^{\alpha \beta}=\eta^{\alpha \beta}-h^{\alpha \beta}+\mathcal{O}\left(h^{2}\right)
$$

whereas

$$
h^{\alpha \beta}:=\eta^{\alpha \mu} \eta^{\beta \nu} h_{\mu \nu}
$$

it follows

$$
\begin{equation*}
\Gamma_{\varkappa \lambda}^{\nu}=\frac{g^{\nu \rho}}{2}\left(\partial_{\varkappa} g_{\rho \lambda}+\partial_{\lambda} g_{\varkappa \rho}-\partial_{\rho} g_{\varkappa \lambda}\right)=\frac{\eta^{\nu \rho}}{2}\left(\partial_{\varkappa} h_{\rho \lambda}+\partial_{\lambda} h_{\varkappa \rho}-\partial_{\rho} h_{\varkappa \lambda}\right)+\mathcal{O}\left(h^{2}\right) \tag{0.1}
\end{equation*}
$$

From

$$
\begin{aligned}
\square x^{\nu} & =g^{\varkappa \lambda} \nabla_{\varkappa} \nabla_{\lambda} x^{\nu}=g^{\varkappa \lambda}\left(\partial_{\varkappa}-\Gamma_{\varkappa \lambda}^{\rho}\right) \underbrace{\nabla_{\rho} x^{\nu}}_{\partial_{\rho} x^{\nu}=\delta_{\rho}^{\nu}}=-g^{\varkappa \lambda} \Gamma_{\varkappa \lambda}^{\nu} \\
& \stackrel{(0.1)}{=}-\frac{1}{2} \eta^{\varkappa \lambda} \eta^{\nu \rho}\left(\partial_{\varkappa} h_{\rho \lambda}+\partial_{\lambda} h_{\varkappa \rho}-\partial_{\rho} h_{\varkappa \lambda}\right)+\mathcal{O}\left(h^{2}\right)=-\eta^{\varkappa \lambda} \eta^{\nu \rho} \partial_{\varkappa} h_{\lambda \rho}+\frac{1}{2} \eta^{\varkappa \lambda} \eta^{\nu \rho} \partial_{\rho} h_{\varkappa \lambda}+\mathcal{O}\left(h^{2}\right) \\
& =-\partial_{\varkappa} \underbrace{\eta^{\varkappa \lambda} \eta^{\nu \rho} h_{\lambda \rho}}_{=: h^{\varkappa \nu}}+\frac{\eta^{\nu \rho}}{2} \partial_{\rho} \underbrace{\eta^{\varkappa \lambda} h_{\varkappa \lambda}}_{=: h}+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

one can see the equivalence

$$
\begin{equation*}
\square x^{\nu}=0 \quad \Leftrightarrow \quad g^{\varkappa \lambda} \Gamma_{\varkappa \lambda}^{\nu}=0 \quad \Leftrightarrow \quad \partial_{\varkappa} h^{\varkappa \nu}-\frac{\eta^{\varkappa \nu}}{2} \partial_{\varkappa} h=0+\mathcal{O}\left(h^{2}\right) \tag{0.2}
\end{equation*}
$$

With the definition

$$
\bar{h}^{\varkappa \nu}:=h^{\varkappa \nu}-\frac{\eta^{\varkappa \nu}}{2} h
$$

it is clear that

$$
\begin{equation*}
\square x^{\nu}=0 \quad \Leftrightarrow \quad \partial_{\varkappa} \bar{h}^{\varkappa \nu}=0+\mathcal{O}\left(h^{2}\right) \tag{0.3}
\end{equation*}
$$

Problem 02

(a) Due to symmetry, the two objects are always located at symmetrical positions $\pm x(t)$ about the origin, while according to Newton

$$
\ddot{x}=-\frac{M G}{(2 x)^{2}}
$$

Substituting $v:=\dot{x}$ one obtains the start-value problem

$$
v^{\prime} v=\frac{d v}{d x} \frac{d x}{d t}=\dot{v}=\ddot{x}=-\frac{M G}{4 x^{2}} \quad, \quad v(\infty)=0
$$

which solves as

$$
v(x)=-\sqrt{\frac{M G}{2 x}}
$$

Finally, the start-value-problem

$$
\dot{x}(t)=-\sqrt{\frac{M G}{2 x}}, x(0)=0
$$

solves as

$$
\int_{0}^{x} \sqrt{x} d x=-\sqrt{\frac{M G}{2}} \int_{0}^{t} d t, t \leq 0
$$

that is

$$
\begin{equation*}
x(t)=\left(\frac{9 M G}{8} t^{2}\right)^{\frac{1}{3}} \tag{0.4}
\end{equation*}
$$

(b) The Newtonian approximation is only reasonable if the resulting equation of motion (EOM) of the objects reflects the one obtained from a general relativistic point of view, in particular the geodesic equation

$$
\ddot{x}^{1}=-\Gamma_{\varkappa \lambda}^{1} \dot{x}^{\varkappa} \dot{x}^{\lambda} \stackrel{!}{\approx}-\partial_{x} \Phi
$$

where $\Phi=-M G /(2 x)$ is the classical potential for one object in the others field. For low speeds, that is $\dot{x}^{i} \ll \dot{x}^{0}$, this is equivalent to

$$
\partial_{x} \Phi \stackrel{!}{\approx} \underbrace{\Gamma_{00}^{1}}_{\in \mathcal{O}(h)} \cdot \underbrace{\dot{x}^{0} \dot{x}^{0}}_{\approx \frac{1}{\left|g_{t t}\right|}} \approx \Gamma_{00}^{1} \stackrel{(0.1)}{\approx} \partial_{0} h_{01}-\frac{1}{2} \partial_{1} h_{00}
$$

For slowly changing fields, that is, $\left|\partial_{0} h_{01}\right| \ll\left|\partial_{1} h_{00}\right|$, one obtains

$$
\begin{equation*}
h_{00} \approx-2 \Phi \tag{0.5}
\end{equation*}
$$

For small $\left|h_{\mu \nu}\right| \ll 1$ the Newtonian EOM are up to zeroth order in h the same as if obtained from the Einstein field equations and geodetical EOM. But as the waves created are of order $\mathcal{O}(h)$ this is adequate, as any corrections would be of higher order in h !
(c) The wave-equation

Using (0.1) we obtain the Riemann-curvature tensor to first order in h :

$$
\begin{equation*}
R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\beta \nu}^{\alpha}-\partial_{\nu} \Gamma_{\beta \mu}^{\alpha}+\mathcal{O}\left(h^{2}\right) \stackrel{(0.1)}{=} \frac{\eta^{\alpha \rho}}{2}\left[\partial_{\mu \beta} h_{\rho \nu}-\partial_{\nu \beta} h_{\mu \rho}-\partial_{\mu \rho} h_{\nu \beta}+\partial_{\nu \rho} h_{\mu \beta}\right]+\mathcal{O}\left(h^{2}\right) \tag{0.6}
\end{equation*}
$$

and consequently the Ricci-tensor

$$
\begin{equation*}
R_{\beta \nu}=R^{\alpha}{ }_{\beta \alpha \nu} \stackrel{(0.6)}{=} \frac{1}{2}\left[\partial_{\alpha \beta} h_{\nu}^{\alpha}+\partial_{\alpha \nu} h_{\beta}^{\alpha}-\partial_{\nu \beta} h-\square h_{\beta \nu}\right]+\mathcal{O}\left(h^{2}\right) \tag{0.7}
\end{equation*}
$$

The Ricci-scalar

$$
\begin{equation*}
R=\eta^{\beta \nu} R_{\beta \nu}+\mathcal{O}\left(h^{2}\right) \stackrel{(0.7)}{=} \partial_{\alpha \beta} h^{\alpha \beta}-\square h+\mathcal{O}\left(h^{2}\right) \tag{0.8}
\end{equation*}
$$

finally leads to the Einstein-tensor

$$
\begin{align*}
& G_{\beta \nu}=R_{\beta \nu}-\frac{\eta_{\beta \nu}}{2} R+\mathcal{O}\left(h^{2}\right) \stackrel{(0.7)}{(0.8)}=\frac{\partial_{\beta}}{2}\left(\partial_{\alpha} h^{\alpha}{ }_{\nu}-\partial_{\nu} \frac{h}{2}\right)+\frac{\partial_{\nu}}{2}\left(\partial_{\alpha} h^{\alpha}{ }_{\beta}-\partial_{\beta} \frac{h}{2}\right) \\
&-\frac{\square}{2} \underbrace{\left(h_{\beta \nu}-\eta_{\beta \nu} \frac{h}{2}\right)}_{\bar{h}_{\beta \nu}}-\frac{1}{2} \eta^{\lambda \rho} \eta_{\beta \nu} \partial_{\lambda}\left(\partial_{\alpha} h^{\alpha}{ }_{\rho}-\partial_{\rho} \frac{h}{2}\right)+\mathcal{O}\left(h^{2}\right) \tag{0.9}
\end{align*}
$$

Choosing harmonic gauge condition $\square x^{\mu}=0$, that is

$$
\eta^{\rho \nu}\left(\partial_{\alpha} h^{\alpha}{ }_{\rho}-\partial_{\rho} \frac{h}{2}\right) \stackrel{(0.2)}{=} 0+\mathcal{O}\left(h^{2}\right)
$$

or equivalently ${ }^{1}$

$$
\begin{equation*}
\partial_{\alpha} h_{\rho}^{\alpha}-\partial_{\rho} \frac{h}{2}=0+\mathcal{O}\left(h^{2}\right) \tag{0.10}
\end{equation*}
$$

leads to

$$
\begin{equation*}
G_{\beta \nu}=-\frac{\square}{2} \bar{h}_{\beta \nu}+\mathcal{O}\left(h^{2}\right) \tag{0.11}
\end{equation*}
$$

The Einstein-Field-Equations thus imply the wave-equation

$$
\begin{equation*}
\square \bar{h}_{\mu \nu}=-16 \pi G T_{\mu \nu}+\mathcal{O}\left(h^{2}\right) \tag{0.12}
\end{equation*}
$$

we shall be considered only to first order in h.

Solving the wave-equation for a single object

Any solution can be written in the form

$$
\begin{equation*}
\bar{h}_{\mu \nu}(x)=\int \bar{h}_{\mu \nu}(k) e^{i x^{\lambda} k_{\lambda}} d k \tag{0.13}
\end{equation*}
$$

while the vacuum equations $\square \bar{h}_{\mu \nu}=0$ imply

$$
0=\bar{h}_{\mu \nu}(k) \cdot \square e^{i x^{\lambda} k_{\lambda}}=-\bar{h}_{\mu \nu}(k) \cdot k_{\lambda} k^{\lambda}
$$

that is

$$
\begin{equation*}
\eta(\varkappa, \varkappa)=0 \quad \forall \bar{h}_{\mu \nu}(k) \neq 0 \tag{0.14}
\end{equation*}
$$

Moreover, the harmonic gauge we demanded is equivalent to

$$
\begin{equation*}
0=\bar{h}_{\mu \nu}(k) \cdot \partial_{\mu} e^{i x^{\lambda} k_{\lambda}}=i k_{\mu} \bar{h}^{\mu \nu}(k) \tag{0.15}
\end{equation*}
$$

that is, the spectral perturbation components $\bar{h}_{\mu \nu}(k)$ are perpendicular to the wave-vector k !. As is known, the (retarded) Greens function of the D'Alembert-Operator \square is given by

$$
\begin{equation*}
G(x, y)=G(x-y)=-\frac{\delta\left(\|\mathbf{x}-\mathbf{y}\|-\left(x^{0}-y^{0}\right)\right)}{4 \pi\|\mathbf{x}-\mathbf{y}\|} \tag{0.16}
\end{equation*}
$$

and thus

$$
\bar{h}^{i j}(x) \stackrel{(0.12)}{=}-16 \pi G \int G(x, y) \cdot T^{i j}(y) d y \stackrel{(0.16)}{=} 4 G \int \frac{T^{i j}(t-\|\mathbf{x}-\mathbf{y}\|, \mathbf{y})}{\|\mathbf{x}-\mathbf{y}\|} d^{3} \mathbf{y}
$$

[^0]We shall first consider a source, at each time-point t concentrated in a relatively narrow space-region $\mathbf{z}(t)$ (later $T \sim \delta$). Assuming that the source (or T for that matter) is moving at a speed much lower than 1, that is, the support supp f of

$$
f(\mathbf{y}):=T(t-\|\mathbf{x}-\mathbf{y}\|, \mathbf{y})
$$

is small with respect to $\|\mathbf{x}\|$, concentrated around $\mathbf{z}(t)$, implies

$$
\bar{h}^{i j}(t, \mathbf{x}) \approx \frac{4 G}{\|\mathbf{x}-\mathbf{z}(t)\|} \int T^{i j}(\underbrace{t-\|\mathbf{x}-\mathbf{z}(t)\|}_{\tau=\tau(t)}, \mathbf{y}) d^{3} \mathbf{y}
$$

Partial integration leads to
$\bar{h}^{i j}(t, \mathbf{x}) \approx \frac{4 G}{\| \mathbf{x - \mathbf { z } (t) \|}} \cdot\{\underbrace{\int \partial_{y^{k}}\left(y^{i} T^{k j}(\tau, \mathbf{y})\right) d^{3} \mathbf{y}}_{\substack{\text { surface integral } \\=0}}-\int y^{i} \underbrace{\partial_{k} T^{k j}}_{-\partial_{0} T^{0 j}}(\tau, \mathbf{y}) d^{3} \mathbf{y}\}=\frac{4 G}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \int y^{i} \partial_{0} T^{0 j}(\tau, \mathbf{y}) d^{3} \mathbf{y}$

$$
\begin{aligned}
& \frac{4 G}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot\{\underbrace{\int \partial_{y^{k}}\left(y^{j} y^{i} \partial_{0} T^{0 k}(\tau, \mathbf{y})\right) d^{3} \mathbf{y}}_{\begin{array}{c}
\text { surface integral } \\
=0
\end{array}}-\int y^{j} y^{i} \partial_{0} \underbrace{\partial_{k} T^{0 k}}_{-\partial_{0} T^{00}}(\tau, \mathbf{y}) d^{3} \mathbf{y}-\underbrace{\int y^{j} \partial_{0} T^{0 i}(\tau, \mathbf{y}) d^{3} \mathbf{y}}_{\begin{array}{c}
\int y^{i} \partial_{0} T^{00}(\tau, \mathbf{y}) d^{3} \mathbf{y} \\
\text { since } h^{i j}=h^{j i}
\end{array}}\} \\
& =\frac{2 G}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \int y^{i} y^{j} \partial_{00} T^{00}(\tau, \mathbf{y}) d^{3} \mathbf{y}=\frac{2 G}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \partial_{00} \underbrace{\left.\int y^{i} y^{j} T^{00}\right|_{(\tau, \mathbf{y})} d^{3} \mathbf{y}}_{\sim \text { quadrupole moment }}
\end{aligned}
$$

Similarly, by only performing one partial integration, we obtain

$$
\begin{equation*}
\bar{h}^{i 0}(t, \mathbf{x}) \approx \frac{4 G}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \int y^{i} \partial_{0} T^{00}(\tau, \mathbf{y}) d^{3} \mathbf{y} \tag{0.17}
\end{equation*}
$$

Specifically, for an object moving slowly along a world-line $\mathbf{z}(t)$, that is, $T^{00}(t, \mathbf{y}) \approx M \delta^{(3)}(\mathbf{y}-\mathbf{z}(t))$, one gets

$$
\begin{equation*}
\left.\bar{h}^{i j}(t, \mathbf{x}) \approx \frac{2 G M}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \partial_{00}\left(z^{i} z^{j}\right)\right|_{\tau(t)} \tag{0.18}
\end{equation*}
$$

and

$$
\begin{align*}
& \left.\bar{h}^{i 0}(t, \mathbf{x}) \approx \frac{4 G M}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \partial_{0} z^{i}\right|_{\tau} \tag{0.19}\\
& \bar{h}^{00}(t, \mathbf{x}) \approx \frac{4 G M}{\|\mathbf{x}-\mathbf{z}(t)\|} \tag{0.20}
\end{align*}
$$

In particular for $i=j=x$:

$$
\begin{equation*}
\bar{h}_{x x}(t, \mathbf{x})=\left.\bar{h}^{x x}(t, \mathbf{x}) \approx \frac{2 G M}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \partial_{00}\left(x^{2}\right)\right|_{\tau} \tag{0.21}
\end{equation*}
$$

The perturbation for two colliding objects

As ODE (0.12) is linear, solutions for more than one sources turn out to be the sums of individual solutions. For the two objects ${ }^{2}$ calculated in (1) one obtains:

$$
\begin{aligned}
\bar{h}_{x x}(t, 0, R, 0) & \stackrel{(0.21)}{\approx} 4 G M \cdot \frac{\left.\partial_{00} x^{2}\right|_{\tau}}{\sqrt{R^{2}+x^{2}(t)}}=\frac{4 G M}{9 \sqrt{R^{2}+x^{2}(t)}} \cdot\left(\frac{9 M}{\tau(t)}\right)^{\frac{2}{3}} \\
& =\frac{4 G M}{9 \sqrt{R^{2}+x^{2}(t)}} \cdot\left(\frac{9 M}{t-\sqrt{R^{2}+x^{2}(t)}}\right)^{\frac{2}{3}}
\end{aligned}
$$

[^1]As $z^{2}=z^{3}=0$ for both objects, obviously $\bar{h}^{i j}=0$ for all $(i, j) \neq(1,1)$. Thus, the perturbation $\bar{h}_{\mu \nu}$ has trace

$$
\bar{h}:=\bar{h}^{\mu}{ }_{\mu}=\eta_{00} \bar{h}^{00}+\eta_{11} \bar{h}^{x x} \approx \frac{4 G M}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot\left[\left.\partial_{00}\left(x^{2}\right)\right|_{\tau}-2\right]
$$

With

$$
h^{\mu \nu}=\bar{h}^{\mu \nu}+\frac{\eta^{\mu \nu}}{2} h \stackrel{\bar{h}=-h}{=} \bar{h}^{\mu \nu}-\frac{\eta^{\mu \nu}}{2} \bar{h}
$$

it follows

$$
\begin{align*}
h_{x x}(t, \mathbf{x}) & =\left.h^{x x}(t, \mathbf{x}) \approx \frac{2 G M}{\|\mathbf{x}-\mathbf{z}(t)\|} \cdot \partial_{00}\left(x^{2}\right)\right|_{\tau}+\frac{4 G M}{\|\mathbf{x}-\mathbf{z}(t)\|} \\
& =\frac{2 G M}{\sqrt{R^{2}+x^{2}(t)}} \cdot\left[\frac{1}{9}\left(\frac{9 M}{t-\sqrt{R^{2}+x^{2}(t)}}\right)^{\frac{2}{3}}+2\right] \tag{0.22}
\end{align*}
$$

Problem 03

As was seen in problem (02), the Lorenz gauge $\partial_{\mu} \bar{h}^{\mu \nu}$ leads to the field equations

$$
\begin{equation*}
\square \bar{h}^{\mu \nu}=-16 \pi G T^{\mu \nu}+\mathcal{O}\left(h^{2}\right) \tag{0.23}
\end{equation*}
$$

whereas

$$
\bar{h}^{\mu \nu}:=h^{\mu \nu}-\frac{\eta^{\mu \nu}}{2} h
$$

Thus the equations of motion $\nabla_{\nu} T^{\mu \nu}=0$ imply

$$
\begin{aligned}
& 0 \stackrel{(0.23)}{=} \nabla_{\nu} \square \bar{h}^{\mu \nu}+\mathcal{O}\left(h^{2}\right) \stackrel{\square=g^{\alpha \beta} \partial_{\alpha \beta}}{=} \partial_{\nu} \eta^{\alpha \beta} \partial_{\alpha \beta} \bar{h}^{\mu \nu}+\partial_{\nu} h^{\alpha \beta} \partial_{\alpha \beta} \square \bar{h}^{\mu \nu}+\Gamma_{\nu \lambda}^{\mu} \square \bar{h}^{\lambda \nu}+\Gamma_{\nu \lambda}^{\nu} \square \bar{h}^{\mu \lambda}+\mathcal{O}\left(h^{2}\right) \\
& =\eta^{\alpha \beta} \partial_{\alpha \beta} \underbrace{\partial_{\nu} \bar{h}^{\mu \nu}}_{0}+\underbrace{\partial_{\nu} h^{\alpha \beta} \partial_{\alpha \beta} \square \bar{h}^{\mu \nu}+\Gamma_{\nu \lambda}^{\mu} \square \bar{h}^{\lambda \nu}+\Gamma_{\nu \lambda}^{\nu} \square \bar{h}^{\mu \lambda}+\mathcal{O}\left(h^{2}\right)}_{\substack{\in \mathcal{O}\left(h^{2}\right) \\
\text { as } \Gamma \in \mathcal{O}(h)}}=0+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

which is true only up to first order in h.

[^0]: ${ }^{1}$ Note that $\left(\eta^{\rho \nu}\right)$ is invertible.

[^1]: ${ }^{2}$ Assuming low mass, such that $\dot{x} \ll 1$.

