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Problem 01

Starting with
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one can see the equivalence

Oz =0 & ¢?T% =0 & 8.h — ”2 d,h =0+ O(h?) (0.2)
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it is clear that

Oz =0 <  8,h =0+0(h?) (0.3)

Problem 02

(a) Due to symmetry, the two objects are always located at symmetrical positions +x(¢) about the origin, while
according to Newton
MG
(22)?




Substituting v := & one obtains the start-value problem
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which solves as

Finally, the start-value-problem

solves as
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that is
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z(t) = <9MGt?)é (0.4)

The Newtonian approximation is only reasonable if the resulting equation of motion (EOM) of the objects
reflects the one obtained from a general relativistic point of view, in particular the geodesic equation

where & = —MG/(2x) is the classical potential for one object in the others field. For low speeds, that is
' < 1, this is equivalent to
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For slowly changing fields, that is, |0pho1| < |01hoo|, one obtains

For small |h,,| < 1 the Newtonian EOM are up to zeroth order in h the same as if obtained from the
Einstein field equations and geodetical EOM. But as the waves created are of order O(h) this is adequate,
as any corrections would be of higher order in h!

The wave-equation

Using (0.1) we obtain the Riemann-curvature tensor to first order in h:

Raﬂ/w = 5#%3 - &/Fgu + O(hQ) (Oil) %W [8/tﬂhpv - auﬁhup - a/tphVB + aw’huﬁ} + O(hz) (0~6)
and consequently the Ricci-tensor
Ry = R® oy = % (Oush®y + dawh® 5 — Bygh — O] + O(h2) (0.7)
The Ricci-scalar
R=1"Rg, +0(1h?) "Z) 0,177 — Oh + O(h?) (0.8)



finally leads to the Einstein-tensor
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Choosing harmonic gauge condition Cz# = 0, that is
y o h\ (0.2) 9
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« h 2
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leads to
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The Einstein-Field-Equations thus imply the wave-equation

Ohy = —167GT,,,, + O(h?) (0.12)

we shall be considered only to first order in h.

Solving the wave-equation for a single object

Any solution can be written in the form

To(@) = / T (k)™ 5 dk (0.13)
while the vacuum equations DEW = 0 imply

0= Ry (k) - O™ Fx =~ (k) - kak

that is

Nt 2) =0 ¥ (k) #0 (0.14)
Moreover, the harmonic gauge we demanded is equivalent to

0= Ry (k) - 0™ F> = ik, B (k) (0.15)

that is, the spectral perturbation components Ew(k) are perpendicular to the wave-vector k! .
As is known, the (retarded) Greens function of the D’Alembert-Operator [J is given by
8 (Ilx —yll = (=° —¢%))

G(z,y) =G(r —y) = — pr— (0.16)

and thus
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INote that (n”¥) is invertible.



We shall first consider a source, at each time-point ¢ concentrated in a relatively narrow space-region z(t)
(later T ~ §). Assuming that the source (or T for that matter) is moving at a speed much lower than 1,
that is, the support supp f of

fy) =Tt = x=yl,y)
is small with respect to ||x||, concentrated around z(t), implies
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Partial integration leads to

—ij . . 4G . .
R (t,x) ~ {/8 s (Y TR (1,y)) &Py /y T (1,y) d3y} = /ylaoTOJ(T, y) &’y
s ) o I — 2]
—0o ¥
surface integral
16 Oy (v y DT & Ty 9y Ok T & 00T &
FEEoh e (VY 00T (1,y)) &y — | yy'do okT % (1,y) Py — [ 0T (1,y) d’y
/ 78[]TDO . N
surface_mtegral fy780T0] _(T7Y)__d3y
- since h'7=h7"
2G o 2G o
_ e i g 00 3y _ 2 i, j00 3
~ e VT Py = g w [Ty 4

~quadrupole moment

Similarly, by only performing one partial integration, we obtain

e ATy 'y (017)

Specifically, for an object moving slowly along a world-line z(t), that is, T%(¢,y) ~ M§®)(y — z(t)), one
gets
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In particular for i = j = x:
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The perturbation for two colliding objects

As ODE (0.12) is linear, solutions for more than one sources turn out to be the sums of individual solutions.
For the two objects? calculated in (1) one obtains:

dwz?|,  4GM (9]\/[)
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2 Assuming low mass, such that & < 1.



As 2?2 = 23 = 0 for both objects, obviously 77 = 0 for all (i,7) # (1,1). Thus, the perturbation h,, has

trace AGM
E . Eu = 7700%00 + ’Ihlﬁxx ~ 800(1‘2) —2
! [x —z(t)] [ l-=2]

Wlth wro = g
po _ v T h=—hpue T
h B+ 5 h h 5 R
it follows
2GM AGM
heo(t,x) = K™% (t,x) ® ———— - O, 2| +———
(t:3) = W () ~ = - @+
1 3
S 'cA VA B S S R 022)
VR?+22(t) |9\t — /R?+22(t)
Problem 03

As was seen in problem (02), the Lorenz gauge Qﬁw leads to the field equations

Or" = —167GT™ + O(h?) (0.23)

whereas uv
B =~ T
2

Thus the equations of motion V,T*” = 0 imply
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which is true only up to first order in h.



