General Theory of Relativity
 FSU Jena - WS 2009/2010
 Problem set 11

February 04, 2010

Problem 01 (Carroll, Problem 5.2)

Consider a perfect fluid in a static, circularly symmetric (2+1)-dimensional spacetime, equivalently, a cylindrical configuration in $(3+1)$-dimensions with perfect rotational symmetry.
(a) Derive the analogue of the Tolman-Oppenheimer-Volkoff (TOV) equation for $(2+1)$ dimensions.
(b) Show that the vacuum solution can be written as

$$
d s^{2}=-d t^{2}+\frac{1}{1-8 G M} d r^{2}+r^{2} d \vartheta^{2}
$$

Here M is a constant.
(c) Show that another way to write the same solution is

$$
d s^{2}=-d \tau^{2}+d \xi^{2}+\xi^{2} d \varphi^{2}
$$

where $\varphi \in\left[0,2 \pi(1-8 G M)^{1 / 2}\right]$.
(d) Solve the $(2+1)$ TOV equation for a constant density star. Find $p(r)$ and solve for the metric.
(e) Solve the $(2+1)$ TOV equation for a star with equation of state $p=\varkappa \rho^{3 / 2}$. Find $p(r)$ and solve for the metric.
(f) Find the mass $M(R):=\int_{0}^{2 \pi} \int_{0}^{R} \rho d r d \vartheta$ and the proper mass $\bar{M}(R):=\int_{0}^{2 \pi} \int_{0}^{R} \rho \sqrt{-g} d r d \vartheta$ for the solutions in parts (d) and (e).

