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Preface: Metric on sub-manifolds
Let (M, g) be an n-dimensional semi-Riemann manifold with coordinates x1, .., xn. Let N be the (n − 1)-
dimensional manifold defined by

N := {xn : const}

equipped with the limitation g̃ of the metric g on TN . Let g be of the Form

g = g̃ + gnn · dxndxn

Let from now on latin indices run from 1 to (n− 1), greek indices run from 1 to n. Then

1. The Christoffel-Symbols Γ̃kij on N are same as Γkij on M .

2. The Riemann-Tensor R̃ on N is given by

R̃a bij = Rabij + ΓnibΓ
a
jn − ΓnjbΓ

a
in

with R being the Riemann-Tensor on M (Note: no summation over n!).

3. The Ricci-Tensor R̃ on N is given by

R̃ij = Rij −Rninj + ΓnaiΓ
a
jn − ΓnjiΓ

a
an

(Note: no summation over n!)

4. The Ricci-scalar R̃ on N is given by

R̃ = R− gnnRnn − gibRnbni + gibΓnabΓ
a
in − gibΓnibΓaan

(Note: no summation over n!)

Proof:

1.

Γ̃kij =
g̃kr

2
(∂ig̃rj + ∂j g̃ri − ∂r g̃ij) =

gkr

2
(∂igrj + ∂jgri − ∂rgij) =

0
for
µ=n︷︸︸︷
gkµ

2
(∂igµj + ∂jgµi − ∂µgij) = Γkij

2.

R̃a bij
(1)
= ∂iΓajb − ∂jΓaib + ΓljbΓ

a
il − ΓlibΓ

a
jl = ∂iΓajb − ∂jΓaib +

(
ΓλjbΓ

a
iλ − ΓnjbΓ

a
in

)
−
(
ΓλibΓ

a
jλ − ΓnibΓ

a
jn

)
= Rabij + ΓnibΓ

a
jn − ΓnjbΓ

a
in
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3.

R̃ij = R̃a iaj
(b)
= Raiaj + ΓnaiΓ

a
jn − ΓnjiΓ

a
an = (Rαiαj −Rninj) + ΓnaiΓ

a
jn − ΓnjiΓ

a
an

= Rij −Rninj + ΓnaiΓ
a
jn − ΓnjiΓ

a
an

4.

R̃ = g̃ibR̃ib = gibR̃bi
(c)
= gibRbi − gibRnbni + gibΓnabΓ

a
in − gibΓnibΓaan

=

0
for
β=n︷︸︸︷
giβ ·Rβi − gibRnbni + gibΓnabΓ

a
in − gibΓnibΓaan

=
(
gγβRβγ − gnβ︸︷︷︸

0
for
β 6=n

Rβn

)
− gibRnbni + gibΓnabΓ

a
in − gibΓnibΓaan

= R− gnnRnn − gibRnbni + gibΓnabΓ
a
in − gibΓnibΓaan

Problem 01
Ricci- & Einstein Tensor

Starting with the general form of a 2-dimensional, static, circularly symmetric metric

g̃ = −e2α(r)dt2 + e2β(r)dr2 + r2dϑ2

we notice that this is actually the limitation of the 4-dimensional metric

g = −e2α(r)dt2 + e2β(r)dr2 + r2 dϑ2 + r2 sin2 ϑ dϕ2

on the sub-manifold {ϕ : const}. Using the above results we get the 3-dimensional, non-trivial components of
the Ricci-Tensor

R̃tt = Rtt −Rϕtϕt = Rtt −
e2(α−β)

r
· ∂rα = e2(α−β)

[
∂2
rα+ (∂rα)2 − ∂rα∂rβ +

∂rα

r

]

R̃rr = −∂2
rα− (∂rα)2 + ∂rα∂rβ +

∂rβ

r

R̃ϑϑ = e−2β [r(∂rβ − ∂rα)]

where use has been made of the results in problem set # 8 and

Rµνµκ︸ ︷︷ ︸
no

summation

= gµλRλνµκ︸ ︷︷ ︸
summation

over λ

g
diagonal

= gµµRµνµκ︸ ︷︷ ︸
no

summation

= gννRνµκµ ·
gµµ

gνν︸ ︷︷ ︸
no

summation

g
diagonal

= gνλRλµκµ ·
gµµ

gνν︸ ︷︷ ︸
summation

over λ

= Rνµκµ ·
gµµ

gνν︸ ︷︷ ︸
no

summation

for diagonal metrics, in particular

Rϕiϕk︸ ︷︷ ︸
no

summation

= Riϕkϕ ·
gϕϕ

gii︸ ︷︷ ︸
no

summation

Consequently we obtain the Ricci-scalar

R̃ = g̃ijR̃ij = 2e−2β

[
−∂2

rα− (∂rα)2 + ∂rα∂rβ +
1
r

(∂rβ − ∂rα)
]
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Finally we obtain the non-trivial components of the Einstein-Tensor

G̃tt = R̃tt −
g̃tt
2
R̃ =

e2(α−β)

r
· ∂rβ

G̃rr = R̃rr −
g̃rr
2
R̃ =

∂rα

r

G̃ϑϑ = R̃ϑϑ −
g̃ϑϑ
2
R̃ = e−2β

[
r (∂rβ − ∂rα) + r2∂2

rα+ r2(∂rα)2 − r2∂rα∂rβ
]

Perfect, rotational-symmetric fluid

The energy-momentum tensor for a perfect fluid is given by

Tµν = (p+ ρ)UµUν + pgµν (0.1)

with U as the velocity vector field for the fluid. We introduce co-flowing coordinates1, so that

Uµ =

(
1√
|gtt|

, 0, 0

)
; Uµ =

(
−
√
|gtt|, 0, 0

)
and consequently

Tµν = (p+ ρ) · e2α · δµtδνt + pgµν

In particular, the only non-trivial components of Tµν are given by

T tt = ρ · e−2α , T rr = p · e−2β , Tϑϑ =
p

r2

The Einstein equations

Gµν = 8πTµν (0.2)

imply

∂rβ(r) = 8πrρ(r) · e2β(r) (0.3)

and

∂rα(r) = 8πrp(r) · e2β(r) (0.4)

The ODE (0.3) is equivalent to

∂rm(r) = 2πrρ(r) (0.5)

whereas

m(r) :=
1
8

[
1− e−2β(r)

]
(0.6)

with boundary condition m(0) = 0 (that is, e2β(0) = 1). One directly obtains

m(r) = 2π

r∫
0

rρ(r) dr (0.7)

Conservation of the energy-momentum tensor ∇µTµν = 0 implies

0 = ∇µTµr = ∂rT
rr +

(
Γttr + Γϑϑr + Γrrr

)
T rr + ΓrttT

tt + ΓrrrT
rr + ΓrϑϑT

ϑϑ

= e−2β [(p+ ρ)∂rα+ ∂rp]

and together with (0.4) & (0.6) the TOV equation

dp

dr
= −(p+ ρ) · 8πrp(r)

1− 8m(r)
(0.8)

1Note that these preserve rotational symmetry & time-independence.
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Vacuum

In case of vacuum, that is
R̃tt = R̃rr = R̃ϑϑ = 0

one obtains
0 = R̃tt + e2(α−β)R̃rr =

1
r
e2(α−β) [∂rα+ ∂rβ]

that is

∂rα = −∂rβ (0.9)

Using R̃ϑϑ = 0 one gets
∂rα = ∂rβ

and thus together with (0.9)

∂rα = 0 = ∂rβ (0.10)

or equivalently
α = A : const , β = B : const

Consequently

g = −e2Adt2 + e2Bdr2 + r2dϑ2 (0.11)

By substituting

t̃ = t̃(t) := eAt , M :=
1− e−2B

8
one obtains

g = −dt̃2 +
1

1− 8M
dr2 + r2dϑ2 (0.12)

Further substituting
τ := t̃ , ξ = ξ(r) :=

r√
1− 8M

, ϕ :=
√

1− 8M · ϑ

leads to

g = −dτ2 + dξ2 + ξ2dϕ2 (0.13)

whereas
ϕ ∈

[
0, 2π

√
1− 8M

]

Constant density EOS

Let ρ ≡ ρ0 be constant, then

m(r)
(0.7)
= πr2ρ0

(0.14)

and the TOV equation (0.8) takes the form

dp

dr
= −(p+ ρ0) · 8πrp

1− 8πρ0r2

which solves as

ln p
ρ0
− ln(p+ ρ0)

ρ0
=
∫

dp

(p+ ρ0)p
= −

∫
8πr

1− 8πρ0r2
dr =

1
ρ0

ln
∣∣1− 8πρ0r

2
∣∣ 12 + const
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to give

p(r) = ρ0C ·
∣∣1− 8πρ0r

2
∣∣ 12

1− |1− 8πρ0r2|
1
2
, C : const (0.15)

Furthermore, inserting m and p into (0.4) yields

∂rα = 8πρ0rC ·
∣∣1− 8πρ0r

2
∣∣− 1

2

1− |1− 8πρ0r2|
1
2

which implies

α(r) = C ln
{

1−
∣∣1− 8πρ0r

2
∣∣ 12}+ 2A , A > 0 (0.16)

As a simple time-scaling t 7→ eAt eliminates the constant A, we w.l.o.g. assume A = 0 and obtain the metric

g = −
[
1−

√
1− 8πρ0r2

]2C
dt2 +

1
1− 8πρ0r2

dr2 + r2dϑ2 (0.17)

The proper mass M(R) is in particular given by

M(R) = 2πρ0

R∫
0

√
|gs| dr = 2πρ0

R∫
0

r dr√
1− 8πρ0r2

=
1
4

[
1−

√
1− 8πρ0R2

]
with gs = grrdr

2 + gϑϑdϑ
2 as the spatial part of g.

Simple EOS

Let

p = κρ
3
2 (0.18)

be the equation of state for the considered fluid. Then (0.8) takes the form

1
κρ 3

2 + ρ

dρ

dr︸ ︷︷ ︸
d

dr [ln ρ−2 ln(κ√ρ+1)]

= − 16πrρ
3(1− 8m(r))

(0.5)
=

1
3
d

dr
ln |1− 8m(r)|

from which

ρ(r)
(κ
√
ρ(r) + 1)2

= C · |1− 8m(r)|
1
3 , C > 0 (0.19)

follows. Solving for m and differentiation with respect to r, yields

ρ(
κ√ρ+ 1

)7 dρdr = −16
3
C3πr

which solves as

1 + 6κ√ρ+ 16κ2ρ+ 20κ3ρ
3
2

10κ4
(
1 + κ√ρ

)6 = −8C3πr2 +A , A : const (0.20)

Consistency with (0.19) (in particular at r = 0) implies

A =
1 + 6κ√ρ0 + 16κ2ρ0 + 20κ3ρ

3
2
0

10κ4
(
1 + κ√ρ0

)6 , ρ0 := ρ(0)
(0.19)

=
C(

1− κ
√
C
)2
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Relations (0.6) & (0.19) imply

e2β =
1

1− 8m
= C3 ·

(
κ√ρ+ 1

)6
ρ3

(0.21)

Solving (0.19) for ρ yields

ρ(r) =
|1− 8m(r)|

1
3 C[

1− κ |1− 8m(r)|
1
6
√
C
]2 (0.22)

and consequently

p(r) =
κ · |1− 8m(r)|

1
2 C

3
2[

1− κ |1− 8m(r)|
1
6
√
C
]3 (0.23)

Furthermore, relations (0.4), (0.6) & (0.18) imply

∂rα =
8κπrρ 3

2

1− 8m
(0.22)

=
8κπrρ |1− 8m|−

5
6
√
C[

1− κ |1− 8m|
1
6
√
C
]2 (0.5)

= −3
d

dr

{
1

1− κ |1− 8m|
1
6
√
C

}

and thus

α(r) =
−3

1− κ |1− 8m(r)|
1
6
√
C

+B , B : const (0.24)

As B can be eliminated by a simple time-scaling t 7→ eBt, we w.l.o.g. assume B = 0 and obtain the metric

g = exp

[
−6

1− κ |1− 8m(r)|
1
6
√
C

]
dt2 +

dr2

1− 8m(r)
+ r2dϑ2 (0.25)
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