General Theory of Relativity FSU Jena - WS 2009/2010
 Problem set 10

January 28, 2010

Problem 01

Derive a first order differential equation for the trajectory (r as a function of φ) for equatorial orbits in the Schwarzschild geometry.

Problem 02 (Carroll, Problem 5.3)

Consider a particle (not necessary on a geodesic) that has fallen inside the event horizon, $r<2 G M$. Use the ordinary Schwarzschild coordinates $(t, r, \vartheta, \varphi)$. Show that the radial coordinate must decrease at a minimum rate given by

$$
\left|\frac{d r}{d \tau}\right| \geq \sqrt{\frac{2 G M}{r}-1}
$$

Calculate the maximum lifetime for a particle along a trajectory from $r=2 G M$ to $r=0$. Express this in seconds for a black hole with mass measured in solar masses.

Problem 03 (Carroll, Problem 5.5)

Consider a comoving observer sitting at constant spatial coordinates ($r_{0}, \vartheta_{0}, \varphi_{0}$), around a Schwarzschild black hole of mass M. The observer drops a beacon into the black hole (straight down, along a radial trajectory). The beacon emits radiation at a constant wavelength λ_{em} (in the beacon rest frame).
(a) Calculate the coordinate speed $d r / d t$ of the beacon, as a function of r.
(b) Calculate the proper speed of the beacon. That is, imagine there is a comoving observer at fixed r, with a locally inertial coordinate system set up as the beacon passes by, and calculate the speed as measured by the comoving observer. What is it at $r=2 G M$?
(c) Calculate the wavelength $\lambda_{\text {obs }}$, measured by the observer at r_{0}, as a function of the radius $r_{\text {em }}$ at which the radiation was emitted.
(d) Calculate the time $t_{\text {obs }}$ at which a beam emitted by the beacon at radius $r_{\text {em }}$ will be observed at r_{0}.
(e) Show that at late times, the redshift grows exponentially: $\lambda_{\mathrm{obs}} / \lambda_{\mathrm{em}} \propto e^{t_{\mathrm{obs}} / T}$. Give an expression for the time constant T in terms of the black hole mass M.

