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Problem 01

The equations of motion (EOM) of free particles in the Schwarzschild metric can be described by the Lagrangian
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and the Euler-Lagrange equations
d oL oc 0
dr Oit  Oxk
whereas for the orbit we assume the curve parameter to be the proper time 7:
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with s = 0 for photons and s = 1 for massive particles. Equations (0.2) lead to
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In the special case of equatorial orbits, that is ¥ = 7/2, eq. (0.3) takes the form
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which together with (0.4) & (0.5) leads to
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Finally
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whereas we w.l.o.g. we assumed j—; > 0. The constants E2, L can be interpreted as total energy and angular

momentum of the particle respectively.



Problem 02
Let & = (i,?’",ﬁ,gb) be the velocity of the particle and 7 be the proper time of the particle. Then causality

implies
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and thus
Y (0.8)
dr r

From (0.8) one can see, that if r(79) < 2GM, 7(19) < 0 at some point 7y (« particle falls into the black hole),
then! 7(7) < () V 7 > 79 and the particle inevitably falls into the origin 7 = 0. Thus the life-time 7" of a
particle within the event-horizon is given by
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In particular, T decreases as || increases (for varying trajectories). From the above calculations, one can see
that |7| is minimal, if ¢ =¥ = ¢ = 0 and thus T' maximal for the trajectory
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Integrating the ODE (0.9) leads to
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Problem 03

Let (to, 70,90, o) be the start position of the beacon trajectory x(7), ro > 2GM and 7 its proper time starting
at drop-point.

(a) In analogy to (0.5) in problem 01 the beacon-trajectory satisfies
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1This can be seen as follows: 7 can not be positive after 79 since then there would exist some 71 > 79 with 7(71) = 0 and
(1) <0 V 79 <7 <7 But this means r(r1) = 2GM, which is in contradiction to r(79) < 2GM.
Thus 7(7) <0 V 7 > 79, which implies r(7) < r(79) V 7 > 79 and due to (0.8) thus »(7) < r(19) V 7 > 70.

Mg ~ 4.95 x 1076 5.



Dropping the beacon implies 7(0) = 9(0) = ¢(0) = 0 so that
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which implies
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Condition —1 = g(1, &) takes for radial trajectories the form
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which together with (0.12) and (0.14) implies
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and thus
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Equation (0.15) leads to the proper speed
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In particular
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The photons z,(A\) transmitted by the beacon, reaching the observer, are those transmitted along the
previously followed world line in positive r-direction, thus

9u

i = 10y + 750, T 1,0, + ;

1,0, (0.20)

As the considered observer rests at 79, we may use (0.27) and obtain
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Finally, using (0.17) and (0.19) leads to
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(d) From eq. (0.20) one gets for the photon headed to the observer
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Solving this ODE delivers the time t,,5s needed for the photon to travel from rey to ro:
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Figure 0.1: Illustration of the beacon falling along a radial
trajectory into the black hole.



Notes on the Doppler-effect & redshift

A photon on a (geodesic) world line z,(\), appears to an observer on a (not necessarily geodesic) world line
z1(7) at frequency
v=up-g(tp,d1)

with vy being some constant®. Keeping in mind that for static metrics* energy is conserved®
git - lfp = F : const

(see proof below) the ratio of frequencies wq,ws at which two observers x1 (71 ), x2(72) observe that same photon
is given by
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with g, Xp, X1, X2 being the spatial parts of the metric and the three world lines respectively. In case of a photon
emitted by a beacon x; at local frequency 4, the frequency vops for a remote, resting® observer xop,s is given by
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Through g(Zobs, Tobs) = —1 it follows
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In case of a resting beacon as well” (0.27) simplifies further to
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(comp. gravitational redshift).

On the conservation of energy along geodesics

Let g be such that for some coordinate index s:

8%g;uj =0V wry N g= g%%dx”da:” + s

with g, := g‘T{xk:const}. Then for any curve satisfying the geodesic equation V& = 0, that is

@t + Th,ara” (0.29)
the value

E:=1""g,,

is constant along the curve.
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4Thus Otguy =0 and g = geedt? + gs, with g := g|T{t:COBSt} being the spatial part.
5Thus given by E = % g9(&p, X) — gs(Xp, X)] for any tangent vector X = X9, + X.
6That is, Tops = iobsat.

"That is, &, = tp - O and % = 0.

3If the photon is emitted by the beacon z(7) at local frequency vy, then vy =



Example: For static metrics g, that is 8;g,, = 0 and g = gdt® + g, with the spatial part g, = g T {t:const}?

the energy .
E:=gy-t
is conserved.
Proof: Let z = z(7). Then
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