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Problem 01
The equations of motion (EOM) of free particles in the Schwarzschild metric can be described by the Lagrangian

L(x, ẋ) = g(ẋ, ẋ) = −
(

1− 2M
r

)
· ṫ2 +

(
1− 2M

r

)−1

· ṙ2 + r2 · ϑ̇2 + r2 sin2 ϑ · ϕ̇2 (0.1)

and the Euler-Lagrange equations

d

dτ

∂L
∂ẋµ

− ∂L
∂xµ

= 0 (0.2)

whereas for the orbit we assume the curve parameter to be the proper time τ :

g(ẋ, ẋ) ≡ −s : const (0.3)

with s = 0 for photons and s = 1 for massive particles. Equations (0.2) lead to

0 =
d

dτ

∂L
∂ϕ̇
− ∂L
∂ϕ︸︷︷︸
0

=
d

dτ

(
2r2 sin2 ϑ · ϕ̇

)
⇒ r2 sin2 ϑ · ϕ̇ = L : const (0.4)

and

0 =
d

dτ

∂L
∂ṫ
− ∂L

∂t︸︷︷︸
0

= − d

dτ

[
2
(

1− 2M
r

)
· ṫ
]
⇒

(
1− 2M

r

)
· ṫ = E : const (0.5)

In the special case of equatorial orbits, that is ϑ ≡ π/2, eq. (0.3) takes the form

−
(

1− 2M
r

)
· ṫ2 +

(
1− 2M

r

)−1

· ṙ2 + r2 · ϕ̇2 + s = 0

which together with (0.4) & (0.5) leads to

ṙ2 = E2 − s ·
(

1− 2M
r

)
−
(

1− 2M
r

)
· L

2

r2
(0.6)

Finally

dr

dϕ
=
dr

dτ
· dτ
dϕ

=
ṙ

ϕ̇

(0.4)&(0.6)
=

r

L
·

√
r2E2 − rs · (r − 2M)−

(
1− 2M

r

)
· L2 (0.7)

whereas we w.l.o.g. we assumed dr
dϕ ≥ 0. The constants E2, L can be interpreted as total energy and angular

momentum of the particle respectively.
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Problem 02
Let ẋ =

(
ṫ, ṙ, ϑ̇, ϕ̇

)
be the velocity of the particle and τ be the proper time of the particle. Then causality

implies

−1 = g(ẋ, ẋ) =
(

2GM
r
− 1
)
· ṫ2 −

(
2GM
r
− 1
)−1

· ṙ2 + r2 · ϑ̇2 + r2 sin2 ϑ · ϕ̇2

that is

ṙ2 =
(

2GM
r
− 1
)

+
(

2GM
r
− 1
)2

· ṫ2︸ ︷︷ ︸
≥0

+
(

2GM
r
− 1
)
· r2 · ϑ̇2︸ ︷︷ ︸

≥0

+
(

2GM
r
− 1
)
· r2 sin2 ϑ · ϕ̇2︸ ︷︷ ︸
≥0

≥
(

2GM
r
− 1
)

and thus ∣∣∣∣drdτ
∣∣∣∣ ≥

√
2GM
r
− 1 (0.8)

From (0.8) one can see, that if r(τ0) < 2GM, ṙ(τ0) < 0 at some point τ0 (↔ particle falls into the black hole),
then1 ṙ(τ) ≤ ṙ(τ0) ∀ τ ≥ τ0 and the particle inevitably falls into the origin r = 0. Thus the life-time T of a
particle within the event-horizon is given by

0 = 2GM +

T∫
0

˙r(τ)︸︷︷︸
<0

dτ = 2GM −
T∫

0

|ṙ| dτ

In particular, T decreases as |ṙ| increases (for varying trajectories). From the above calculations, one can see
that |ṙ| is minimal, if ṫ = ϑ̇ = ϕ̇ = 0 and thus T maximal for the trajectory

−ṙ = |ṙ| =
√

2GM
r
− 1 (0.9)

Integrating the ODE (0.9) leads to

Tmax =

T∫
0

dτ =

2GM∫
0

dr√
2GM
r − 1

= r ·
√

2GM
r
− 1−M · arctan

[
(M − r)
2M − r

·
√

2GM
r
− 1

] ∣∣∣∣2GM
0

= πM (0.10)

that is2

Tmax ≈ 1.55× 10−5 s · M
M�

(0.11)

Problem 03
Let (t0, r0, ϑ0, ϕ0) be the start position of the beacon trajectory x(τ), r0 > 2GM and τ its proper time starting
at drop-point.

(a) In analogy to (0.5) in problem 01 the beacon-trajectory satisfies(
1− 2M

r

)
· ṫ = E : const (0.12)

1This can be seen as follows: ṙ can not be positive after τ0 since then there would exist some τ1 > τ0 with ṙ(τ1) = 0 and
ṙ(τ) ≤ 0 ∀ τ0 ≤ τ ≤ τ1 But this means r(τ1) = 2GM , which is in contradiction to r(τ0) < 2GM .
Thus ṙ(τ) < 0 ∀ τ ≥ τ0, which implies r(τ) ≤ r(τ0) ∀ τ ≥ τ0 and due to (0.8) thus ṙ(τ) ≤ ṙ(τ0) ∀ τ ≥ τ0.

2M� ≈ 4.95× 10−6 s.
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Dropping the beacon implies ṙ(0) = ϑ̇(0) = ϕ̇(0) = 0 so that

−1 = g(ẋ(0), ẋ(0)) = −
(

1− 2GM
r0

)
· ṫ2(0)

which implies

ṫ(0) =
1√

1− 2GM
r0

(0.13)

and thus

E
(0.12)

=
√

1− 2GM
r0

(0.14)

Condition −1 = g(ẋ, ẋ) takes for radial trajectories the form

−1 = −
(

1− 2GM
r

)
· ṫ2 +

(
1− 2GM

r

)−1

· ṙ2

which together with (0.12) and (0.14) implies

ṙ2 = E2 −
(

1− 2GM
r

)
=

2GM
r
− 2GM

r0
(0.15)

and thus

dr

dt
=
ṙ

ṫ
= −

(
1− 2GM

r

)
·
√

2GM
r
· r0 − r
r0 − 2GM

(0.16)

(b) Equation (0.15) leads to the proper speed

ṙ =
dr

dτ
= −

√
2GM ·

(
1
r
− 1
r0

)
(0.17)

In particular

dr

dτ

∣∣∣∣
r=2GM

= −
√
r0 − 2GM

r0
(0.18)

Furthermore

ṫ =
dt

dτ
=
(
dr

dt

)−1
dr

dτ
=
(

1− 2GM
r

)−1

·
√

1− 2GM
r0

(0.19)

(c) The photons xp(λ) transmitted by the beacon, reaching the observer, are those transmitted along the
previously followed world line in positive r-direction, thus

ẋp = ṫp∂t + ṙp∂r
g(ẋp,ẋp)=0

= ṫp∂t +

√∣∣∣∣ gttgrr
∣∣∣∣ · ṫp∂r (0.20)

As the considered observer rests at r0, we may use (0.27) and obtain

λobs = λem ·

√
|gtt|

∣∣
obs

gtt
∣∣
em

· g(ẋp, ẋ)
ṫp
∣∣
em

= λem ·

√
|gtt|

∣∣
obs

gtt
∣∣
em

· 1
ṫp
∣∣
em

·
[
gttṫpṫ+ grr ṙpṙ

] ∣∣
em

(0.20)
= λem ·

√
|gtt|

∣∣
obs

gtt
∣∣
em

·

[
gttṫ+ grr ṙ ·

√∣∣∣∣ gttgrr
∣∣∣∣
] ∣∣∣∣

em

sgn(grr)6=sgn(gtt)= λem ·
√
|gtt|

∣∣
obs
·

[
ṫ− ṙ ·

√∣∣∣∣grrgtt
∣∣∣∣
] ∣∣∣∣

em

gtt=g
−1
rr= λem ·

√
|gtt|

∣∣
obs
·
[
ṫ− ṙ

|gtt|

] ∣∣∣∣
em

3



Finally, using (0.17) and (0.19) leads to

λobs = λem ·
(

1− 2GM
r0

)(
1− 2GM

rem

)−1

·

[
1 +

√
2GM(r0 − rem)
rem(r0 − 2GM)

]
(0.21)

In particular λobs
r→2GM+

−→ ∞.

(d) From eq. (0.20) one gets for the photon headed to the observer

drp
dtp

=
ṙp

ṫp
=

√∣∣∣∣ gttgrr
∣∣∣∣ = 1− 2GM

r

Solving this ODE delivers the time tobs needed for the photon to travel from rem to r0:

tobs =

tobs∫
0

dtp =

r0∫
rem

dr(
1− 2GM

r

) = (r0 − rem) + 2GM ln
[
r0 − 2GM
rem − 2GM

]
(0.22)

In particular tobs
r→2GM+

−→ ∞.

(e) Since tobs →∞ is equivalent to rem → 2GM , eq. (0.21) takes for late times the form

λobs

λem
=
(

1− 2GM
r0

)
rem

rem − 2GM
·

[
1 +

√
2GM(r0 − rem)
rem(r0 − 2GM)︸ ︷︷ ︸
1+O(rem−2GM)

]

=
(

1− 2GM
r0

)
· 4GM
rem − 2GM

+O(1) +O(rem − 2GM)

Solving (0.22) for rem leads to

rem − 2GM = (r0 − 2GM) exp
[
r0 − rem − tobs

2GM

]
so that for large tobs

λobs

λem
∝ exp

[
tobs

2GM

]
(0.23)

r0

rem

2GM

M

λ
e
m

λ
o
b
s

0

Figure 0.1: Illustration of the beacon falling along a radial
trajectory into the black hole.
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Notes on the Doppler-effect & redshift
A photon on a (geodesic) world line xp(λ), appears to an observer on a (not necessarily geodesic) world line
x1(τ) at frequency

ν = ν0 · g(ẋp, ẋ1)

with ν0 being some constant3. Keeping in mind that for static metrics4 energy is conserved5

gtt · ṫp = E : const

(see proof below) the ratio of frequencies ω1, ω2 at which two observers x1(τ1), x2(τ2) observe that same photon
is given by

ν1
ν2

=
g(ẋp, ẋ1)
g(ẋp, ẋ2)

=
E · ṫ1 + gs(ẋp, ẋ1)
E · ṫ2 + gs(ẋp, ẋ2)

(0.24)

with gs,xp,x1,x2 being the spatial parts of the metric and the three world lines respectively. In case of a photon
emitted by a beacon xb at local frequency νb, the frequency νobs for a remote, resting6 observer xobs is given by

νobs = νb ·
E · ṫobs

g(ẋp, ẋb)
(0.25)

Through g(ẋobs, ẋobs) = −1 it follows

ṫobs =
1√
|gtt|

(0.26)

and thus

νobs =
gtt
∣∣
b√

|gtt|
∣∣
obs

·
νb · ṫp

∣∣
b

g(ẋp, ẋb) (0.27)

In case of a resting beacon as well7 (0.27) simplifies further to

νobs = νb ·

√
|gtt|

∣∣
b

|gtt|
∣∣
obs

(0.28)

(comp. gravitational redshift).

On the conservation of energy along geodesics

Let g be such that for some coordinate index κ:

∂κgµν = 0 ∀ µ, ν ∧ g = gκκdx
κdxκ + gs

with gs := g
∣∣
T{xκ :const}. Then for any curve satisfying the geodesic equation ∇ẋẋ = 0, that is

ẍµ + Γµρσẋ
ρẋσ (0.29)

the value
E := ẋκ · gκκ

is constant along the curve.
3If the photon is emitted by the beacon xb(τ) at local frequency νb, then ν0 = νb

g(ẋp,ẋb)
.

4Thus ∂tgµν = 0 and g = gttdt2 + gs, with gs := g
˛̨
T{t=const} being the spatial part.

5Thus given by E = 1
Xt · [g(ẋp, X)− gs(ẋp,X)] for any tangent vector X = Xt∂t + X.

6That is, ẋobs = ṫobs∂t.
7That is, ẋb = ṫb · ∂t and ẋb = 0.
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Example: For static metrics g, that is ∂tgµν = 0 and g = gttdt
2 + gs with the spatial part gs = g

∣∣
T{t:const},

the energy
E := gtt · ṫ

is conserved.

Proof: Let x = x(τ). Then

Ė = ẍκgκκ + ẋκ ġκκ
(0.29)

= −Γκ
ρσẋ

ρẋσgκκ + ẋκẋµ∂µgκκ = −g
κλ

2
(∂ρgσλ + ∂σgρλ − ∂λgρσ) ẋρẋσgκκ + ẋκẋµ∂µgκκ

= −g
κκ

2
(
∂ρgσκ + ∂σgρκ − ∂κgρσ︸ ︷︷ ︸

κ

)
ẋρẋσgκκ + ẋκẋµ∂µgκκ = −g

κκ

2
(ẋρẋκ∂ρgκκ + ẋκẋσ∂σgκκ) gκκ + ẋκẋµ∂µgκκ

= − gκκgκκ︸ ︷︷ ︸
1

ẋµẋκ∂µgκκ + ẋµẋκ∂µgκκ = 0
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