GR: Problem Set \#9

1. The Weyl tensor is defined in n dimensions as

$$
\begin{aligned}
C_{\rho \sigma \mu \nu}= & R_{\rho \sigma \mu \nu}-\frac{2}{(n-2)}\left(g_{\rho[\mu} R_{\nu] \sigma}-g_{\sigma[\mu} R_{\nu] \rho}\right) \\
& +\frac{2}{(n-1)(n-2)} g_{\rho[\mu} g_{\nu] \sigma} R .
\end{aligned}
$$

Show that the Weyl tensor $C_{\nu \rho \sigma}^{\mu}$ is left invariant by a conformal transformation.
2. (Carroll, Problem 4.3) The four-dimensional δ-function on a manifold M is defined by

$$
\int_{M} F\left(x^{\mu}\right)\left[\frac{\delta^{(4)}\left(x^{\sigma}-y^{\sigma}\right)}{\sqrt{-g}}\right] \sqrt{-g} d x^{4}=F\left(y^{\sigma}\right)
$$

for an arbitrary function $F\left(x^{\mu}\right)$. Meanwhile, the energy-momentum tensor for a pressure-less perfect fluid (dust) is

$$
T^{\mu \nu}=\rho U^{\mu} U^{\nu}
$$

where ρ is the energy density and U^{μ} is the four-velocity. Consider such a fluid that consists of a single particle traveling on a world line $x^{\mu}(\tau)$, with τ the proper time. The energy-momentum tensor for this fluid is then given by

$$
T^{\mu \nu}\left(y^{\sigma}\right)=m \int_{M}\left[\frac{\delta^{(4)}\left(y^{\sigma}-x^{\sigma}(\tau)\right)}{\sqrt{-g}}\right] \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau} d \tau
$$

where m is the rest mass of the particle. Show that covariant conservation of energy-momentum tensor, $\nabla_{\mu} T^{\mu \nu}=0$, implies that $x^{\mu}(\tau)$ satisfies the geodesic equation.
3. Find a coordinate transformation $\tilde{r}=\psi(\tilde{r})^{2} \tilde{r}$, such that the spatial part of the Schwarzschild metric is in the form

$$
d s^{2}=\psi^{4}\left(d \tilde{r}^{2}+\tilde{r}^{2} d \Omega^{2}\right)
$$

i.e., find $\psi(\tilde{r})$, with the condition that $\tilde{r} \rightarrow r$ as $r \rightarrow \infty$.

- What range of Schwarzschild r is covered by the new coordinates?
- Calculate the area A of a sphere of constant \tilde{r}. At what value of \tilde{r} is the area a minimum?

Milton Ruiz, milton.ruiz@uni-jena.de

