General Theory of Relativity FSU Jena - WS 2009/2010
 Problem set 08

January 14, 2010

Problem 01

Prove the relation

$$
2 \nabla_{[\mu} \nabla_{\varkappa]} V_{\alpha}=R_{\alpha \varkappa \nu}^{\sigma} V_{\sigma}
$$

Problem 02

One of the few explicit black-hole solutions to Einstein's equations, the Schwarzschild metric, is spherically symmetric. As a tool to construct the Schwarzschild metric, consider a general spherically symmetric metric,

$$
d s^{2}=-e^{2 \alpha(r)} d t^{2}+e^{2 \beta(r)} d r^{2}+r^{2} d \Omega^{2}
$$

The non-zero Christoffel symbols for this metric are

$$
\begin{array}{lll}
\Gamma_{t r}^{t}=\partial_{r} \alpha & \Gamma_{t t}^{r}=e^{2(\alpha-\beta)} \partial_{r} \alpha & \Gamma_{r r}^{r}=\partial_{r} \beta \\
\Gamma_{r \vartheta}^{\vartheta}=\frac{1}{r} & \Gamma_{\vartheta \vartheta}^{r}=-r e^{-2 \beta} & \Gamma_{r \phi}^{\phi}=\frac{1}{r} \\
\Gamma_{\phi \phi}^{r}=-r e^{-2 \beta} \sin ^{2} \vartheta & \Gamma_{\phi \phi}^{\vartheta}=-\sin \vartheta \cos \vartheta & \Gamma_{\vartheta \phi}^{\phi}=\frac{\cos \vartheta}{\sin \vartheta}
\end{array}
$$

The non-zero components of the Riemann tensor are

$$
\begin{aligned}
& R_{r t r}^{t}=\partial_{r} \alpha \partial_{r} \beta-\partial_{r}^{2} \alpha-\left(\partial_{r} \alpha\right)^{2} \\
& R^{t}{ }_{\vartheta t \vartheta}=-r e^{-2 \beta} \partial_{r} \alpha \\
& R_{\phi t \phi}^{t}=-r e^{-2 \beta} \sin ^{2} \vartheta \partial_{r} \alpha \\
& R^{r}{ }_{\vartheta r \vartheta}=r e^{-2 \beta} \partial_{r} \beta \\
& R^{r}{ }_{\phi r \phi}=r e^{-2 \beta} \sin ^{2} \vartheta \partial_{r} \beta \\
& R_{\phi \vartheta \phi}^{\vartheta}=\left(1-e^{-2 \beta}\right) \sin ^{2} \vartheta
\end{aligned}
$$

The non-zero components of the Ricci tensor are

$$
\begin{aligned}
& R_{t t}=e^{2(\alpha-\beta)}\left[\partial_{r}^{2} \alpha+\left(\partial_{r} \alpha\right)^{2}-\partial_{r} \alpha \partial_{r} \beta+\frac{2}{r} \partial_{r} \alpha\right] \\
& R_{r r}=-\partial_{r}^{2} \alpha-\left(\partial_{r} \alpha\right)^{2}+\partial_{r} \alpha \partial_{r} \beta+\frac{2}{r} \partial_{r} \beta \\
& R_{\vartheta \vartheta}=e^{-2 \beta}\left[r\left(\partial_{r} \beta-\partial_{r} \alpha\right)-1\right]+1 \\
& R_{\phi \phi}=R_{\vartheta \vartheta} \sin ^{2} \vartheta
\end{aligned}
$$

As an illustration of the calculations involved, verify four of the non-zero Christoffel symbols, three of the non-zero components of the Riemann tensor, and three of the non-zero components of the Ricci tensor. Note that some are easier than others; you can reduce your work by choosing carefully!

