GR: Problem Set \#7

- A geodesic curve is a generalization of the idea of a straight line to the case of curvilinear coordinates or curved manifolds. By definition, a geodesic curve is a curve that parallel transports its own tangent vector, that is, a curve whose tangent vector satisfies

$$
U^{\alpha} \nabla_{\alpha} U^{\beta}=0
$$

- A Killing vector field is a vector field on a manifold that preserves the metric. This field satisfies the equation

$$
\nabla_{(\mu} K_{\nu)}=0
$$

- The components of the Riemann curvature tensor, in terms of the Christoffel symbols, are given by

$$
R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\beta \nu}^{\alpha}-\partial_{\nu} \Gamma_{\beta \mu}^{\alpha}+\Gamma_{\rho \mu}^{\alpha} \Gamma_{\beta \nu}^{\rho}-\Gamma_{\rho \nu}^{\alpha} \Gamma_{\beta \mu}^{\rho}
$$

1. (Carroll, Problem 3.5.) Consider a 2-sphere with coordinates (θ, ϕ) and metric

$$
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
$$

(a) Show that lines of constant longitude ($\phi=$ constant) are geodesics, and that the only line of constant latitude $(\theta=$ constant $)$ that is a geodesic is the equator $(\theta=\pi / 2)$.
(b) Take a vector with components $V^{\mu}=(1,0)$ and parallel-transport it once around a circle of constant latitude. What are the components of the resulting vector, as a function of θ ?
2. (Carroll, Problem 3.6.) A good approximation to the metric outside the surface of the Earth is provided by

$$
d s^{2}=-(1+2 \Phi) d t^{2}+(1-2 \Phi) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where

$$
\Phi=-\frac{G M}{r}
$$

may be thought of as the familiar Newtonian gravitational potential. Hence G is Newton's constant and M is the mass of the Earth. For this problem Φ may be assumed to be small.
(a) Imagine a clock on the surface of the Earth at distance R_{1} from the Earth's center, and another clock on a tall building at distance R_{2} from the Earth's center. Calculate the time elapsed on each clock as a function of the coordinate time t. Which clock runs faster?
(b) Solve for a geodesic corresponding to a circular orbit around the equator of the Earth $(\theta=\pi / 2)$. What is $d \phi / d t$?
3. If \mathbf{K} is a Killing vector field and \mathbf{p} is the tangent vector to a geodesic, show that $\mathbf{K} \cdot \mathbf{p}$ is constant along the geodesic.
4. If \mathbf{K} is a Killing vector, prove that

$$
\nabla_{\alpha} \nabla_{\beta} K^{\mu}=R^{\mu}{ }_{\beta \alpha \nu} K^{\nu} .
$$

Milton Ruiz, milton.ruiz@uni-jena.de

