General Theory of Relativity

FSU Jena - WS 2009/2010
Problem set 06 - Solutions

Stilianos Louca

February 10, 2010

Problem 01

Defining angles between vectors X, Y as

. 9(X,Y)
VX, X) - /g(YY)

(compare to definition in Euclidian & unitary spaces), leads to the preservation of angles by any conformal
metric-transformation gm,’m = Q) Guv| , as
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Furthermore, for any vector X, g(X, X) = 0 implies g(X, X) = 0, that is, null-curves are still null-curves after

Q-9(X,X)
conformal metric-transformations.

Problem 02
Starting with
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and a diagonal metric g,,,, we consider following cases:
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Note that the inverse g"” of the diagonal g,,, is the diagonal matrix with entries g"* =1/g,,,.
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(®): Note that, as g is invertible and diagonal, all entries gy are non-zero. As g is further smooth on M,
it’s entries are also non-zero with constant signum in some open neighborhood of the considered point, thus
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Problem 03

Beginning with the Euklidian metric in spherical coordinates
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and using the results from (02) we write
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and finally
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Problem 04 (Carroll, Problem 3.2)

As is known, in coordinates for which all first derivatives of the components g,, vanish (Riemann-normal-
coordinates), partial and covariant derivatives are identical, that is

V.V =0,V" = (Vy, V)"

In any other coordinate system, the covariant derivative is given by

V, VY =8,V +TY V*
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As the tensor field defined by the covariant derivative does not depend on the coordinates chosen (in other

words: V creates tensors), it may be used to express fields, defined through partial derivatives in Riemann-
normal-coordinates, in other coordinates as well. Thus for example in spherical coordinates:
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for any vector-field

V=V"0,+V"9y + V¥,
Notes:

(i) Typically the gradient of ® € F is defined as the 1-form d® for which d®(X) = X ® for all vectors X:

AP — a#(p dat spherical

Or® dr 4 09® d¥ + 0, dy
As the vectorial gradient V® is defined as the vector field for which
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it is given by

Vo = g"d,d 8,
(indices pulled up).



(ii) Typically, one finds in classical physics textbooks usage of the normalized coordinate-vectors e, instead
of the coordinate-vectors 0,,. Normalizing the basis e, := 0,,/1/9(0p,0,) (non-coordinate!), that is,
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Comparing the latest form with [1] verifies the correctness of the results.
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