General Theory of Relativity FSU Jena - WS 2009/2010 Problem set 06 - Solutions

Stilianos Louca

February 10, 2010

Problem 01

Defining angles between vectors X, Y as

$$X \triangleleft Y := \frac{g(X,Y)}{\sqrt{g(X,X)} \cdot \sqrt{g(Y,Y)}}$$

(compare to definition in Euclidian & unitary spaces), leads to the preservation of angles by any conformal metric-transformation $g_{\mu\nu}|_{x} = \Omega(x) \cdot \tilde{g}_{\mu\nu}|_{x}$, as

$$\frac{g(X,Y)}{\sqrt{g(X,X)}\cdot\sqrt{g(Y,Y)}} = \frac{\Omega\cdot\widetilde{g}(X,Y)}{\sqrt{\Omega\cdot\widetilde{g}(X,X)}\cdot\sqrt{\Omega\cdot\widetilde{g}(Y,Y)}}$$

Furthermore, for any vector X, $\widetilde{g}(X,X)=0$ implies $\underbrace{g(X,X)}_{\Omega\cdot\widetilde{g}(X,X)}=0$, that is, null-curves are still null-curves after conformal metric-transformations.

Problem 02

Starting with

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\varkappa} \left(\partial_{\mu} g_{\nu\varkappa} + \partial_{\nu} g_{\mu\varkappa} - \partial_{\varkappa} g_{\mu\nu} \right)$$

and a diagonal metric $g_{\mu\nu}$, we consider following cases:

1. $\mu \neq \nu \neq \lambda \neq \mu$: Then $g_{\mu\nu} = 0$ and $g^{\lambda\varkappa} = 0$ for $\lambda \neq \varkappa$, thus

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\lambda} \left(\partial_{\mu} \underbrace{g_{\nu\lambda}}_{0} + \partial_{\nu} \underbrace{g_{\mu\lambda}}_{0} \right) = 0$$

2. $\mu = \nu \neq \lambda$, then

$$\Gamma^{\lambda}_{\mu\mu} = \frac{1}{2} \underbrace{g^{\lambda\varkappa}_{0}}_{\substack{\text{for} \\ \text{s} \neq \lambda}} (2\partial_{\mu}g_{\mu\varkappa} - \partial_{\varkappa}g_{\mu\mu}) = \frac{1}{2} g^{\lambda\lambda} \Big(2\partial_{\mu} \underbrace{g_{\mu\lambda}}_{0} - \partial_{\lambda}g_{\mu\mu} \Big) = -\frac{1}{2} g^{\lambda\lambda} \partial_{\lambda}g_{\mu\mu} = -\frac{1}{2} \frac{1}{g_{\lambda\lambda}} \partial_{\lambda}g_{\mu\mu}$$

Note that the inverse $g^{\mu\nu}$ of the diagonal $g_{\mu\nu}$ is the diagonal matrix with entries $g^{\mu\mu} = 1/g_{\mu\mu}$.

3. $\nu = \lambda \neq \mu$, then

$$\Gamma^{\lambda}_{\mu\lambda} = \frac{1}{2} \underbrace{g^{\lambda \varkappa}}_{\substack{\text{for} \\ \text{for} \\ \text{\varkappa} \neq \lambda}} (\partial_{\mu}g_{\lambda\varkappa} + \partial_{\lambda}g_{\mu\varkappa} - \partial_{\varkappa}g_{\mu\lambda}) = \frac{1}{2} g^{\lambda\lambda} \left(\partial_{\mu}g_{\lambda\lambda} + \partial_{\varkappa}g_{\mu\lambda} - \partial_{\varkappa}g_{\mu\lambda} \right) = \frac{1}{2} \underbrace{g^{\lambda\lambda}}_{1/g_{\lambda\lambda}} \partial_{\mu}g_{\lambda\lambda}$$

$$\stackrel{(\clubsuit)}{=} \frac{1}{2} \frac{1}{|g_{\lambda\lambda}|} \partial_{\mu} |g_{\lambda\lambda}| = \partial_{\mu} \left(\ln \sqrt{|g_{\lambda\lambda}|} \right)$$

(\clubsuit): Note that, as g is invertible and diagonal, all entries $g_{\lambda\lambda}$ are non-zero. As g is further smooth on M, it's entries are also non-zero with constant signum in some open neighborhood of the considered point, thus

$$\frac{\partial_{\mu} |g_{\lambda\lambda}| (\mathbf{x})}{|g_{\lambda\lambda}| (\mathbf{x})} = \frac{1}{|g_{\lambda\lambda}(\mathbf{x})|} \cdot \lim_{h \to 0} \frac{|g_{\lambda\lambda}(\mathbf{x} + h\mathbf{e}_{\mu})| - |g_{\lambda\lambda}(\mathbf{x})|}{h}$$

$$= \frac{\operatorname{sgn}(g_{\lambda\lambda}(\mathbf{x}))}{\operatorname{sgn}(g_{\lambda\lambda}(\mathbf{x}))} \cdot \frac{1}{g_{\lambda\lambda}(\mathbf{x})} \cdot \lim_{h \to 0} \frac{g_{\lambda\lambda}(\mathbf{x} + h\mathbf{e}_{\mu}) - g_{\lambda\lambda}(\mathbf{x})}{h}$$

$$= \frac{\partial_{\mu}g_{\lambda\lambda}}{g_{\lambda\lambda}}$$

4. $\mu = \nu = \lambda$, then

$$\Gamma^{\lambda}_{\lambda\lambda} = \frac{1}{2}\underbrace{g^{\lambda\varkappa}_{\substack{\delta\\\text{for}\\\varkappa\neq\lambda}}}(\partial_{\lambda}g_{\lambda\varkappa} + \partial_{\lambda}g_{\lambda\varkappa} - \partial_{\varkappa}g_{\lambda\lambda}) = \frac{1}{2}g^{\lambda\lambda}\partial_{\lambda}g_{\lambda\lambda} = \frac{1}{2}\frac{\partial_{\lambda}g_{\lambda\lambda}}{g_{\lambda\lambda}} \overset{\text{similarly}}{\stackrel{\text{to}}{=}} \partial_{\lambda}\ln\sqrt{|g_{\lambda\lambda}|}$$

Problem 03

Beginning with the Euklidian metric in spherical coordinates

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \vartheta \end{pmatrix}$$

and using the results from (02) we write

$$\Gamma^{\varphi}_{r\vartheta} = \Gamma^{\varphi}_{\vartheta r} = \Gamma^{\vartheta}_{r\varphi} = \Gamma^{\vartheta}_{\varphi r} = \Gamma^{r}_{\vartheta \varphi} = \Gamma^{r}_{\varphi\vartheta} = 0$$

$$\Gamma_{rr}^{\vartheta} = -\frac{1}{2}\frac{1}{g_{\vartheta\vartheta}}\underbrace{\partial_{\vartheta}g_{rr}}_{0} = 0 \qquad \qquad \Gamma_{rr}^{\varphi} = -\frac{1}{2}\frac{1}{g_{\varphi\varphi}}\underbrace{\partial_{\varphi}g_{rr}}_{0} = 0$$

$$\Gamma^r_{\vartheta\vartheta} = -\frac{1}{2}\frac{1}{g_{rr}}\underbrace{\partial_r g_{\vartheta\vartheta}}_{2r} = -r \qquad \qquad \Gamma^\varphi_{\vartheta\vartheta} = -\frac{1}{2}\frac{1}{g_{\varphi\varphi}}\underbrace{\partial_\varphi g_{\vartheta\vartheta}}_{0} = 0$$

$$\Gamma^{r}_{\varphi\varphi} = -\frac{1}{2} \frac{1}{g_{rr}} \underbrace{\partial_{r} g_{\varphi\varphi}}_{2r \sin^{2}\vartheta} = -r \sin^{2}\vartheta \qquad \qquad \Gamma^{\vartheta}_{\varphi\varphi} = -\frac{1}{2} \frac{1}{g_{\vartheta\vartheta}} \underbrace{\partial_{\vartheta} g_{\varphi\varphi}}_{2r^{2} \sin\vartheta \cos\vartheta} = -\sin\vartheta \cos\vartheta$$

$$\Gamma_{r\vartheta}^{\vartheta} = \Gamma_{\vartheta r}^{\vartheta} = \frac{1}{2} \frac{1}{g_{\vartheta\vartheta}} \underbrace{\partial_r g_{\vartheta\vartheta}}_{2r} = \frac{1}{r} \qquad \qquad \Gamma_{r\varphi}^{\varphi} = \Gamma_{\varphi r}^{\varphi} = \frac{1}{2} \frac{1}{g_{\varphi\varphi}} \underbrace{\partial_r g_{\varphi\varphi}}_{2r \sin^2\vartheta} = \frac{1}{r}$$

$$\Gamma^{r}_{\vartheta r} = \Gamma^{r}_{r\vartheta} = \frac{1}{2} \frac{1}{g_{rr}} \underbrace{\partial_{\vartheta} g_{rr}}_{0} = 0 \qquad \qquad \Gamma^{\varphi}_{\vartheta \varphi} = \frac{1}{2} \frac{1}{g_{\varphi \varphi}} \underbrace{\partial_{\vartheta} g_{\varphi \varphi}}_{2r^{2} \sin \vartheta \cos \vartheta} = \cot \vartheta$$

$$\Gamma^r_{\varphi r} = \Gamma^r_{r\varphi} = \frac{1}{2} \frac{1}{g_{rr}} \underbrace{\partial_{\varphi} g_{rr}}_{0} = 0 \qquad \qquad \Gamma^{\vartheta}_{\varphi\vartheta} = \Gamma^{\vartheta}_{\vartheta\varphi} = \frac{1}{2} \frac{1}{g_{\vartheta\vartheta}} \underbrace{\partial_{\varphi} g_{\vartheta\vartheta}}_{0} = 0$$

and finally

$$\Gamma_{rr}^{r} = \frac{1}{2} \frac{\partial r g_{rr}}{g_{rr}} = 0 \qquad \qquad \Gamma_{\vartheta\vartheta}^{\vartheta} = \frac{\partial_{\vartheta} g_{\vartheta\vartheta}}{g_{\vartheta\vartheta}} = 0 \qquad \qquad \Gamma_{\varphi\varphi}^{\varphi} = \frac{\partial_{\varphi} g_{\varphi\varphi}}{g_{\varphi\varphi}} = 0$$

Problem 04 (Carroll, Problem 3.2)

As is known, in coordinates for which all first derivatives of the components $g_{\mu\nu}$ vanish (Riemann-normal-coordinates), partial and covariant derivatives are identical, that is

$$\nabla_{\mu}V^{\nu} = \partial_{\mu}V^{\nu} = (\nabla_{\partial_{\mu}}V)^{\nu}$$

In any other coordinate system, the covariant derivative is given by

$$\nabla_{\mu}V^{\nu} = \partial_{\mu}V^{\nu} + \Gamma^{\nu}_{\mu\varkappa}V^{\varkappa}$$

As the tensor field defined by the covariant derivative does not depend on the coordinates chosen (in other words: ∇ creates tensors), it may be used to express fields, defined through partial derivatives in Riemann-normal-coordinates, in other coordinates as well. Thus for example in spherical coordinates:

$$\vec{\nabla}\Phi \stackrel{\text{cartesian}}{=} (\partial^{\mu}\Phi)\partial_{\mu} = g^{\mu\nu}(\partial_{\nu}\Phi)\partial_{\mu} \stackrel{\text{general}}{=} g^{\mu\nu}(\nabla_{\nu}\Phi)\partial_{\mu} \stackrel{\text{spherical}}{=} (\partial_{r}\Phi)\partial_{r} + \frac{1}{r^{2}}(\partial_{\vartheta}\Phi)\partial_{\vartheta} + \frac{1}{r^{2}\sin^{2}\vartheta}(\partial_{\varphi}\Phi)\partial_{\varphi}$$

$$\operatorname{div} \mathbf{V} \overset{\operatorname{cartesian}}{=} \partial_{\mu} V^{\mu} = \nabla_{\mu} V^{\mu} \overset{\operatorname{general}}{=} \partial_{\mu} V^{\mu} + \Gamma^{\mu}_{\mu \varkappa} V^{\varkappa} \overset{\operatorname{spherical}}{=} \partial_{r} V^{r} + \partial_{\vartheta} V^{\vartheta} + \partial_{\varphi} V^{\varphi} + \frac{2}{r} V^{r} + \operatorname{cot} \vartheta V^{\vartheta}$$

$$\operatorname{rot} \mathbf{V} \stackrel{\operatorname{cartesian}}{=} \partial_{\mu} V_{\nu} \epsilon^{\mu\nu\varkappa} \partial_{\varkappa} = \nabla_{\mu} V^{\lambda} g_{\lambda\nu} \epsilon^{\mu\nu\varkappa} \partial_{\varkappa} \stackrel{\operatorname{general}}{=} \left(\partial_{\mu} V^{\lambda} + \Gamma^{\lambda}_{\mu\varkappa} V^{\varkappa} \right) g_{\lambda\nu} \operatorname{sgn}(\mu\nu\varkappa) \underbrace{\frac{1}{\sqrt{|\det g|}}}_{1/r^{2} \sin \vartheta} \widehat{\partial}_{\varkappa}$$

$$\stackrel{\text{spherical}}{=} \frac{1}{\sin \vartheta} \cdot \left[\sin^2 \vartheta \cdot \partial_\vartheta V^\varphi - \partial_\varphi V^\vartheta + 2 \sin \vartheta \cos \vartheta \cdot V^\varphi \right] \cdot \partial_r$$

$$+ \frac{1}{r^2 \sin \vartheta} \cdot \left[\partial_\varphi V^r - r^2 \sin^2 \vartheta \cdot \partial_r V^\varphi - 2r \sin^2 \vartheta \cdot V^\varphi \right] \cdot \partial_\vartheta$$

$$+ \frac{1}{r^2 \sin \vartheta} \cdot \left[r^2 \partial_r V^\vartheta - \partial_\vartheta V^r + 2r V^\vartheta \right] \cdot \partial_\varphi$$

for any vector-field

$$\mathbf{V} = V^r \partial_r + V^{\vartheta} \partial_{\vartheta} + V^{\varphi} \partial_{\varphi}$$

Notes:

(i) Typically the gradient of $\Phi \in \mathcal{F}$ is defined as the 1-form $d\Phi$ for which $d\Phi(X) = X\Phi$ for all vectors X:

$$d\Phi = \partial_{\mu}\Phi \ dx^{\mu} \stackrel{\text{spherical}}{=} \partial_{r}\Phi \ dr + \partial_{\vartheta}\Phi \ d\vartheta + \partial_{\varphi}\Phi \ d\varphi$$

As the vectorial gradient $\vec{\nabla}\Phi$ is defined as the vector field for which

$$q(\vec{\nabla}\Phi, \cdot) = d\Phi$$

it is given by

$$\vec{\nabla}\Phi = q^{\mu\nu}\partial_{\mu}\Phi \ \partial_{\nu}$$

(indices pulled up).

(ii) Typically, one finds in classical physics textbooks usage of the normalized coordinate-vectors \mathbf{e}_{μ} instead of the coordinate-vectors ∂_{μ} . Normalizing the basis $\mathbf{e}_{\mu} := \partial_{\mu}/\sqrt{g(\partial_{\mu},\partial_{\mu})}$ (non-coordinate!), that is,

$$\mathbf{e}_r := \partial_r \ , \ \mathbf{e}_{\vartheta} := \frac{1}{r} \partial_{\vartheta} \ , \ \mathbf{e}_{\varphi} := \frac{1}{r \sin \vartheta} \partial_{\varphi}$$

and thus

$$\mathbf{V} = V^{\mu} \partial_{\mu} = \underbrace{V^{\mu} \sqrt{g(\partial_{\mu}, \partial_{\mu})}}_{\widetilde{V}^{\mu}} \cdot \mathbf{e}_{\mu} = \widetilde{V}^{\mu} \mathbf{e}_{\mu}$$

that is,

$$\widetilde{V}^r := V^r$$
 , $\widetilde{V}^{\vartheta} := rV^{\vartheta}$, $\widetilde{V}^{\varphi} := r\sin\vartheta \cdot V^{\varphi}$

yields

$$\vec{\nabla}\Phi = (\partial_r \Phi) \cdot \mathbf{e}_r + \frac{1}{r} (\partial_{\vartheta} \Phi) \cdot \mathbf{e}_{\vartheta} + \frac{1}{r \sin \vartheta} (\partial_{\varphi} \Phi) \cdot \mathbf{e}_{\varphi}$$

$$\operatorname{div} \mathbf{V} = \frac{1}{r^2} \partial_r (r^2 \widetilde{V}^r) + \frac{1}{r \sin \vartheta} \left[\partial_\vartheta (\sin \vartheta \cdot \widetilde{V}^\vartheta) + \partial_\varphi \widetilde{V}^\varphi \right]$$

$$\operatorname{rot} \mathbf{V} = \frac{1}{r \sin \vartheta} \left[\partial_{\vartheta} (\sin \vartheta \cdot \widetilde{V}^{\varphi}) - \partial_{\varphi} \widetilde{V}^{\vartheta} \right] \cdot \mathbf{e}_{r} + \frac{1}{r} \left[\frac{1}{\sin \vartheta} \partial_{\varphi} \widetilde{V}^{r} - \partial_{r} (r \widetilde{V}^{\varphi}) \right] \cdot \mathbf{e}_{\vartheta} + \frac{1}{r} \left[\partial_{r} (r \widetilde{V}^{\vartheta}) - \partial_{\vartheta} \widetilde{V}^{r} \right] \cdot \mathbf{e}_{\varphi}$$

Comparing the latest form with [1] verifies the correctness of the results.

References

[1] Taschenbuch Mathematischer Formeln, H.J. Bartsch Fachbuchverlag Leipzig, 2004