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Problem 01 (Carroll, Problem 2.1)
Set U := R?*\ {0} and let o : S* — [0,27) be the natural identification of points in S* with their respective
——

open

angle'. Then the map
O :RxS'—U |, ®rs)=(e"cosp(s), e sinp(s)) , reR, scS?

is a chart covering the whole R x S!.

Problem 02 (Carroll, Problem 2.3)

Let S — R? and each point s € S! be identified with it’s natural angle ¢(s) € [0, 27). First consider the open
covering of S*

St ={(z,y) eS8 1y>0}U{(z,y) €S 12 <0}U{(z,y) €S 1y <0}U{(z,y) €S 12 >0}

U1 U2 Ug, U4

and the bijective, smooth mappings

(I)i : Ul — @(Ui) s (DZ(S) = QD(S) , SE UZ', 1= 17..,4

U, Sl SN RZ

Us

Figure 0.1: On problem 02: Covering of S* by open semi-
circles.

Then U; x Uy, 4,5 =1,..,4 form an open covering of the torus T2 := S x S'. Moreover, the maps
(I)i,j . Ul X Uj - SO(UZ) X SO(U]) ) (I)i,j(ShSQ) = (QO(Sl)7 ¢(82)) , 81 € Ui7 Sg € U]7 Z)J = 17"a4

are all bijective, smooth, compatible and form an atlas of 72.

IDefined for s € S! as the angle ¢ € [0, 27) for which s = (cos ¢, sin ¢) (S* naturally embedded in R?).



Problem 03
Note
For completely antisymmetric X#1~#» and arbitrary Y,,. ., the relation

X H1-Hny — X'ul'“'un}/[u

1. fhn 1eefin]

holds.

Proof: By definition

1
Xﬂl.”#nif[ﬂlu'ﬂn] — Xm,..un; Z sgn(o) 'Yuo<1)~~-uo<n)
" oeS,

gyt 1y L
= XHomrote un)ﬁ Z sgn(o) Yy, .,

7€ sgn(o1)

1
= oo LS o)y,
’ g€Sy,

— xlH1pn — X H1-Bn
*\X[ ! ],Ym--.un = X" Yiropin

XH1-HBn

O

Variant 1
We shall assume the coordinates to be such that g, = diag(—1,1,1,1). Let ¢; := g(0;, 0;) € {£1}, then
#(dz™ A Nda') =g - €4, dx'e+t Ao A datn

(no summation!) with (i1, ...,4,) an even permutation of (0,1,..,n). In particular
#(dx® A da') = —dx? A da®
#(dx® A da?) = dat A da®
#(de¥ A da?) = —dat A da?
#(da' A da?) = dx® A da®
#(da' A da®) = —da® A da®
(dx® A dx®) = da® A dat
With

0 —-E, —FEy —Ej

B2 0o By -B,
(FMV) B E2 7B3 0 Bl
Es By —-By 0

that is,
F = — E1da® Adz' — Eyda® A da® — E3da® A da®
+ Badz! A da? — Boda' A dz® + Bydz? A da?
we can write
«F = — By * (dz® A da') — By + (da® A da?) — Es x (da® A da®)
+ By * (dz' A d2?) — By * (do' A dx®) + By * (da? A da®)

=Ey1dz? A dx® + Esdz® A dxt + Esda' A da?
+ Bsdz® A da® 4+ Boda® A dz? + Bydz® A dat



or in components:
0 Bl BQ B3
—B; 0 FEs —F»

Contracting with g leads to

() L ghegho (+F) , =

Furthermore
—(9031 - 8032 - (9033 —divB
OgB1 + 09 E3 — 03 F» 0 0
pwro_ _
M_ OgBs — 01 E3 + 03 Fq o 0 T B +V x E
= KH OoBs + 01 FEy — 02 F; 0

Thus, Maxwell’s equations divB = 0, 9yB = —V x E are equivalent to K* = 0.

Variant 2

The 1-form *dF is given by:

e 1 oT i1, 1 v o T T
(xdF)" = (xdF),.g"" = gé‘pam(dF)” gt = 3Ep07Y PP g1 (A F) 5y

(0.1)

1
= f&‘pm—%gypgﬁgg’wg%“ . 38[VF/3’Y] = 5”57”8[1,F5ﬂ = EVB’”LaVng

3
On the other hand, 9, (xF)* is given by

By (xE)" = 0y (xF).xg" 9" = 0y [epron 7] 979" = 01 0, gy = —e"7710, F,

—evByn

Thus:
(xdF)W = =0, (xF )" =: 4w K"

But as is known, Maxwell’s equations imply dF' = 0, thus K* = 0.

Problem 04

Note: Spherical & cartesian coordinates relate through

t
rsin cos ¢
rsind sin
rcos v

SIS

Notation: Let

and



(a) The coordinate vectors 0y, 0y, d,, 0 are in cartesian representation given by

0 0
5 _0x | sindcosgp P _0x [ rcosdcosy
" or | sindsing T 99 T | reosdsing
cosv —rsinv
0 1
P _0x [ —rsindsing 5 _ox [0
Y 0p | rsindcose T8 T o
0 0

With respect to the semi-metric (cartesian)

-1 0 0 O
0 1 00
0 0 0 1
their norms are given by
g(ahat) =-1 ) g(aﬁar) =1 ) 9(6193819) = T2 ) 9(69’3’8@) = T2 Sinzﬂ (03)
so that the modified basis vectors
5= D=0, Pyi=dy , b= — 9 (0.4)
t = Ot T T 19~*r197 T rsing ¥ .
are actually normalized?. Fig. (0.2) shows the vectors dy, Oy, 519, 5@ at typical points on S2.
y
Figure 0.2: On problem 04 (a): 819,8%519,@, on a sphere
of constant r =1, ¢t =0.
(b) The dual base {dt, dr,dd, dp} corresponding to {0, 0y, 0y, 0, } is defined through
dua(ag) = (5a5 (0.5)

2Note that the restriction of g on the tangent-space of the sub-mannifold {t : const} is identical to the Euclidian one.



In cartesian representation these covectors are given by du® = Vyu®, that is:

ot
dt = o = (1,0,0,0)

b

or T
dr = o= (0,;

RS

,E) = (0, sinv cosp, sindsinyp, cos?)
T

oY

1 1 1
(07 —costcosp, —cos¥sinp, ——sin 19)
r T r
Oy 0 l1sing 1lcosgp 0
Cox T prsind’ rsind’

Consequently, the covector-basis

de

dt == dt, dr == dr, dv =7 dv, gl?p :=rsind - dp
is dual to the normalized vectors 5,5, 5,«, 519, 8},

(c) The transformation matrix between the two vector-bases e, e,,e,,e. and 0,0y, dy, 0, is given by

1 0 0 0

a(t,r, 9, ) 0 sindcosy sin¥sin ¢ cos ¥

(t,2,9,2) 0 %cosﬁcosgo %cosﬂsingo —%sinﬁ
1 sin 1 cos
0 T r sing 7 sin :; 0
with inverse
1 0 0 0

ot 2.y, ) 0 sinYcosy rcosdcosp —rsindsingp
A71 — \0 ) (07)
a(t,r, v, ) 0 sindsing rcosd¥sing  rsindcosg
0 cos —rsind 0

(d) In spherical coordinates the metric is given by

-1 0 0 0
B ozt ox” 4 (107 0 1 0 0
9aB = Guv 8?81%’ = (A ) gA - 0 0 7,2 0 (08)
cartesian 0 0 0 7~2 sin2 9
with inverse
-1 0 0 0
0 1 0 0
af o~
710 0 &% o0 (0.9)
1
00 0 f5ey
Furthermore, in the modified basis {5a} it is given by
-1 0 0 O
~ v | 0 1 00
90a:08) = | o o 1 o (0.10)
0 0 0 1



(e)

As 0,,0y,0, are also vectors in the tangent-plane of the sub-manifold {t¢ = const}, their scalar-product
9(0q, 0p) is the same as their Euklidian one in cartesian representation. As is known, they form an orthogonal
basis in R?, so that

g(araaﬁ) = g(araago) = g(aﬁvaap) =0

Furthermore, as can be seen from their cartesian representation in part (a), all 3 are orthogonal to 9; (with
respect to g). Thus 0y, 0,, 0y, 0, are orthogonal with respect to g. Furthermore, using (0.3), it is obvious

that the modified vectors 1
Do =~ 0

V19(0a, 00

(compare to (0.4)) are normalized with respect to g, thus form an orthonormal basis.
Note: Alternatively, applying the 2-form g in (0.2) on {Ba} directly leads to the same conclusions.

The gradient of a scalar field f is defined as the vector field V f, which fulfills:
gV, X)=Xf VX : vector field

that is,
Vf=9"(0af)0s

In spherical & modified spherical coordinates thus

Vi (0uf) - 0+ O f) - 00 + %2 ((9af)- 00+ 7«2; o) 2,

sin? 9
~ ~ 1 ~ 1 ~
:(3tf)'3t+(arf)'5r+;'(aﬁf)'aﬁ+m'(a¢f)'a@

Beginning with the definition

Eay...aepy — SgH(Oél, ..,Oén) Y, dEt(gOtﬂ)

of the Levi-Chivita tensor, whereas

1 ... n
sgn(( )) Doy F oy
(&3] [07%
sgn(aq, .., ap) =

0 : otherwise
and
0.8 . =~ = . (0.10
det(g(0n, 03)) 28 r?sind | det(g(0a, 03)) (0.10) 1,
we get
r?sind  : (au,..,aq) even permutation of (t, p, 9, )
Earay = & —r?sin?d  : (ay,..,a4) odd permutation of (¢, p, 9, )
0 : sonst
in spherical coordinates and
1 : (aq, .., a4) even permutation of (¢, p, 9, )
€ar.aqs =4 —1 :(a1,..,a4) odd permutation of (¢, p, V), @)
0 : sonst

in the non-coordinate basis.



