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Problem 01 (Carroll, Problem 2.1)
Set U := R2 \ {0}︸ ︷︷ ︸

open

and let ϕ : S1 → [0, 2π) be the natural identification of points in S1 with their respective

angle1. Then the map

Φ : R× S1 → U , Φ(r, s) = (er cosϕ(s), er sinϕ(s)) , r ∈ R, s ∈ S1

is a chart covering the whole R× S1.

Problem 02 (Carroll, Problem 2.3)
Let S1 ↪→ R2 and each point s ∈ S1 be identified with it’s natural angle ϕ(s) ∈ [0, 2π). First consider the open
covering of S1

S1 =
{

(x, y) ∈ S1 : y > 0
}︸ ︷︷ ︸

U1

∪
{

(x, y) ∈ S1 : x < 0
}︸ ︷︷ ︸

U2

∪
{

(x, y) ∈ S1 : y < 0
}︸ ︷︷ ︸

U3

∪
{

(x, y) ∈ S1 : x > 0
}︸ ︷︷ ︸

U4

and the bijective, smooth mappings

Φi : Ui → ϕ(Ui) , Φi(s) = ϕ(s) , s ∈ Ui, i = 1, .., 4

U1

U2

U3

U4

S1 ↪→ R2

Figure 0.1: On problem 02: Covering of S1 by open semi-
circles.

Then Ui × Uj , i, j = 1, .., 4 form an open covering of the torus T 2 := S1 × S1. Moreover, the maps

Φi,j : Ui × Uj → ϕ(Ui)× ϕ(Uj) , Φi,j(s1, s2) = (ϕ(s1), ϕ(s2)) , s1 ∈ Ui, s2 ∈ Uj , i, j = 1, .., 4

are all bijective, smooth, compatible and form an atlas of T 2.

1Defined for s ∈ S1 as the angle ϕ ∈ [0, 2π) for which s = (cosϕ, sinϕ) (S1 naturally embedded in R2).
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Problem 03
Note

For completely antisymmetric Xµ1...µn and arbitrary Yν1...νn the relation

Xµ1...µnYµ1...µn = Xµ1...µnY[µ1...µn] (0.1)

holds.

Proof: By definition

Xµ1...µnY[µ1...µn] = Xµ1...µn
1
n!

∑
σ∈Sn

sgn(σ) · Yµσ(1)...µσ(n)

= Xµσ−1(1)...µσ−1(n)
1
n!

∑
σ∈Sn

sgn(σ)︸ ︷︷ ︸
sgn(σ−1)

·Yµ1...µn

= Xµσ(1)...µσ(n)
1
n!

∑
σ∈Sn

sgn(σ)Yµ1...µn

= X [µ1...µn]︸ ︷︷ ︸
Xµ1...µn

Yµ1...µn = Xµ1...µnYµ1...µn

Variant 1

We shall assume the coordinates to be such that gµν = diag(−1, 1, 1, 1). Let εi := g(∂i, ∂i) ∈ {±1}, then
∗(dxi1 ∧ · · · ∧ dxip) = εi1 · .. · εip · dxip+1 ∧ · · · ∧ dxin

(no summation!) with (i1, . . . , in) an even permutation of (0, 1, .., n). In particular

∗(dx0 ∧ dx1) = −dx2 ∧ dx3

∗(dx0 ∧ dx2) = dx1 ∧ dx3

∗(dx0 ∧ dx3) = −dx1 ∧ dx2

∗(dx1 ∧ dx2) = dx0 ∧ dx3

∗(dx1 ∧ dx3) = −dx0 ∧ dx2

∗(dx2 ∧ dx3) = dx0 ∧ dx1

With

(Fµν) =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


that is,

F =− E1dx
0 ∧ dx1 − E2dx

0 ∧ dx2 − E3dx
0 ∧ dx3

+B3dx
1 ∧ dx2 −B2dx

1 ∧ dx3 +B1dx
2 ∧ dx3

we can write

∗F =− E1 ∗ (dx0 ∧ dx1)− E2 ∗ (dx0 ∧ dx2)− E3 ∗ (dx0 ∧ dx3)

+B3 ∗ (dx1 ∧ dx2)−B2 ∗ (dx1 ∧ dx3) +B1 ∗ (dx2 ∧ dx3)

=E1dx
2 ∧ dx3 + E2dx

3 ∧ dx1 + E3dx
1 ∧ dx2

+B3dx
0 ∧ dx3 +B2dx

0 ∧ dx2 +B1dx
0 ∧ dx1
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or in components:

(∗F )µν =


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0


Contracting with g leads to

(∗F )µν def= gµρgνσ(∗F )ρσ =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


Furthermore

∂ν(∗F )µν︸ ︷︷ ︸
=:4πKµ

=


−∂0B1 − ∂0B2 − ∂0B3

∂0B1 + ∂2E3 − ∂3E2

∂0B2 − ∂1E3 + ∂3E1

∂0B3 + ∂1E2 − ∂2E1

 =


−div B

0
0
0

+
(

0
∂0B +∇×E

)

Thus, Maxwell’s equations div B = 0, ∂0B = −∇×E are equivalent to Kµ = 0.

Variant 2

The 1-form ∗dF is given by:

(∗dF )µ = (∗dF )κg
κµ =

1
3
ερστκ(dF )ρστgκµ =

1
3
ερστκg

νρgβσgγτgκµ(dF )νβγ

=
1
3
ερστκg

νρgβσgγτgκµ · 3∂[νFβγ] = ενβγµ∂[νFβγ]
(0.1)
= ενβγµ∂νFβγ

On the other hand, ∂ν(∗F )µν is given by

∂ν(∗F )µν = ∂ν(∗F )κλg
µκgνλ = ∂ν

[
εβγκλF

βγ
]
gµκgνλ = εβγµν︸ ︷︷ ︸

−ενβγµ
∂νFβγ = −ενβγµ∂νFβγ

Thus:
(∗dF )µ = −∂ν(∗F )µν =: 4πKµ

But as is known, Maxwell’s equations imply dF = 0, thus Kµ = 0.

Problem 04
Note: Spherical & cartesian coordinates relate through

x :=


t
x
y
z

 =


t

r sinϑ cosϕ
r sinϑ sinϕ
r cosϑ


Notation: Let

u0 := t, u1 = ρ, u2 = ϑ, u3 = ϕ

and
x0 = t, x1 = x, x2 = y, x3 = z
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(a) The coordinate vectors ∂r, ∂ϑ, ∂ϕ, ∂t are in cartesian representation given by

∂r =
∂x
∂r

=


0

sinϑ cosϕ
sinϑ sinϕ

cosϑ

 , ∂ϑ =
∂x
∂ϑ

=


0

r cosϑ cosϕ
r cosϑ sinϕ
−r sinϑ



∂ϕ =
∂x
∂ϕ

=


0

−r sinϑ sinϕ
r sinϑ cosϕ

0

 , ∂t =
∂x
∂t

=


1
0
0
0


With respect to the semi-metric (cartesian)

(gµν) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (0.2)

their norms are given by

g(∂t, ∂t) = −1 , g(∂r, ∂r) = 1 , g(∂ϑ, ∂ϑ) = r2 , g(∂ϕ, ∂ϕ) = r2 sin2 ϑ (0.3)

so that the modified basis vectors

∂̃t := ∂t , ∂̃r := ∂r , ∂̃ϑ :=
1
r
∂ϑ , ∂̃ϕ :=

1
r sinϑ

∂ϕ (0.4)

are actually normalized2. Fig. (0.2) shows the vectors ∂ϑ, ∂ϕ, ∂̃ϑ, ∂̃ϕ at typical points on S2.

∂ϕ∂ϑ

∂ϑ

∂ϑ

∂ϕ

∂ϕ

∂̃ϑ

∂̃ϕ

∂̃ϑ

∂̃ϑ

∂̃ϕ

∂̃ϕ

x

y

z

Figure 0.2: On problem 04 (a): ∂ϑ, ∂ϕ, e∂ϑ, e∂ϕ on a sphere
of constant r = 1, t = 0.

(b) The dual base {dt, dr, dϑ, dϕ} corresponding to {∂t, ∂r, ∂ϑ, ∂ϕ} is defined through

duα(∂β) = δαβ (0.5)

2Note that the restriction of g on the tangent-space of the sub-mannifold {t : const} is identical to the Euclidian one.

4



In cartesian representation these covectors are given by duα = ∇xu
α, that is:

dt =
∂t

∂x
= (1, 0, 0, 0)

dr =
∂r

∂x
=
(

0,
x

r
,
y

r
,
z

r

)
= (0, sinϑ cosϕ, sinϑ sinϕ, cosϑ)

dϑ =
∂ϑ

∂x
=
(

0,
1
r

cosϑ cosϕ,
1
r

cosϑ sinϕ, −1
r

sinϑ
)

dϕ =
∂ϕ

∂x
=
(

0, −1
r

sinϕ
sinϑ

,
1
r

cosϕ
sinϑ

, 0
)

Consequently, the covector-basis

d̃t := dt, d̃r := dr, d̃ϑ := r · dϑ, d̃ϕ := r sinϑ · dϕ

is dual to the normalized vectors ∂̃t, ∂̃r, ∂̃ϑ, ∂̃ϕ.

(c) The transformation matrix between the two vector-bases et, ex, ey, ez and ∂t, ∂r, ∂ϑ, ∂ϕ is given by

Λ =
∂(t, r, ϑ, ϕ)
∂(t, x, y, z)

=



1 0 0 0

0 sinϑ cosϕ sinϑ sinϕ cosϑ

0 1
r cosϑ cosϕ 1

r cosϑ sinϕ − 1
r sinϑ

0 − 1
r

sinϕ
sinϑ

1
r

cosϕ
sinϑ 0


(0.6)

with inverse

Λ−1 =
∂(t, x, y, z)
∂(t, r, ϑ, ϕ)

=



1 0 0 0

0 sinϑ cosϕ r cosϑ cosϕ −r sinϑ sinϕ

0 sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ

0 cosϑ −r sinϑ 0


(0.7)

(d) In spherical coordinates the metric is given by

gαβ = gµν︸︷︷︸
cartesian

∂xµ

∂uα
∂xν

∂uβ
∼= (Λ−1)T gΛ−1 (0.7)

=


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ

 (0.8)

with inverse

gαβ ∼=


−1 0 0 0
0 1 0 0
0 0 1

r2 0
0 0 0 1

r2 sin2 ϑ

 (0.9)

Furthermore, in the modified basis
{
∂̃α
}
it is given by

g
(
∂̃α, ∂̃β

) ∼=

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (0.10)
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(e) As ∂r, ∂ϑ, ∂ϕ are also vectors in the tangent-plane of the sub-manifold {t = const}, their scalar-product
g(∂α, ∂β) is the same as their Euklidian one in cartesian representation. As is known, they form an orthogonal
basis in R3, so that

g(∂r, ∂ϑ) = g(∂r, ∂ϕ) = g(∂ϑ, ∂ϕ) = 0

Furthermore, as can be seen from their cartesian representation in part (a), all 3 are orthogonal to ∂t (with
respect to g). Thus ∂t, ∂r, ∂ϑ, ∂ϕ are orthogonal with respect to g. Furthermore, using (0.3), it is obvious
that the modified vectors

∂̃α =
1√

|g(∂α, ∂α)|
· ∂α

(compare to (0.4)) are normalized with respect to g, thus form an orthonormal basis.
Note: Alternatively, applying the 2-form g in (0.2) on

{
∂̃α
}
directly leads to the same conclusions.

(f) The gradient of a scalar field f is defined as the vector field ∇f , which fulfills:

g (∇f,X) = Xf ∀ X : vector field

that is,
∇f = gαβ(∂αf)∂β

In spherical & modified spherical coordinates thus

∇f (0.9)
= (∂tf) · ∂t + (∂rf) · ∂r +

1
r2
· (∂ϑf) · ∂ϑ +

1
r2 sin2 ϑ

· (∂ϕf) · ∂ϕ

= (∂tf) · ∂̃t + (∂rf) · ∂̃r +
1
r
· (∂ϑf) · ∂̃ϑ +

1
r sinϑ

· (∂ϕf) · ∂̃ϕ

(g) Beginning with the definition

εα1...αn = sgn(α1, .., αn) ·
√

det(gαβ)

of the Levi-Chivita tensor, whereas

sgn(α1, .., αn) :=


sgn

((
1 . . . n

α1 . . . αn

))
: αi 6= αj 6=i

0 : otherwise

and √
det(g(∂α, ∂β))

(0.8)
= r2 sinϑ ,

√
det(g(∂̃α, ∂̃β))

(0.10)
= 1 ,

we get

εα1..α4 =


r2 sinϑ : (α1, .., α4) even permutation of (t, ρ, ϑ, ϕ)
−r2 sinϑ : (α1, .., α4) odd permutation of (t, ρ, ϑ, ϕ)
0 : sonst

in spherical coordinates and

εα1..α4 =


1 : (α1, .., α4) even permutation of (t, ρ, ϑ, ϕ)
−1 : (α1, .., α4) odd permutation of (t, ρ, ϑ, ϕ)
0 : sonst

in the non-coordinate basis.
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