General Theory of Relativity FSU Jena - WS 2009/2010
 Problem set 02

October 29, 2009

Problem 01 (Carroll, Problem 1.3)

Three events, A, B and C, are seen by observer O to occur in order $A B C$. Another observer, \widetilde{O}, sees the events to occur in the order $C B A$. Is it possible that a third observer sees the events in the order $A C B$? Support your conclusion by drawing a spacetime diagram.

Problem 02 (Carroll, Problem 1.10)

Using the tensor transformation law applied to $F_{\mu \nu}$, show how the electric and magnetic 3 -vectors \mathbf{E} and \mathbf{B} transform under
(a) a rotation about the y-axis
(b) a boost along the z-axis.

Problem 03

Two equivalent inertial frames S and S^{\prime} are such that S^{\prime} moves in the positive x direction with speed v as seen from S. The spatial coordinate axes in S^{\prime} are parallel to those in S and the two origins are coincident at time $t=t^{\prime}=0$.
(a) Show that the isotropy and homogeneity of space-time and equivalence of different inertial frames (first postulate of relativity) require that the most general transformation between the space-time coordinates (t, x, y, z) and $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ is the linear transformation

$$
x^{\prime}=f\left(v^{2}\right) x-v f\left(v^{2}\right) t ; t^{\prime}=g\left(v^{2}\right) t-v h\left(v^{2}\right) x ; y^{\prime}=y ; z^{\prime}=z
$$

and the inverse

$$
x=f\left(v^{2}\right) x^{\prime}+v f\left(v^{2}\right) t^{\prime} ; t=g\left(v^{2}\right) t^{\prime}+v h\left(v^{2}\right) x^{\prime} ; y=y^{\prime} ; z=z^{\prime}
$$

where f, g and h are functions of v^{2}, the structures of the x^{\prime} and x equations are determined by the definition of the inertial frames in relative motion, and the signs in the inverse equation are a reflection of the reversal of roles of the two frames.
(b) Show that consistency of the initial transformation and its inverse require

$$
f=g \quad \text { and } \quad f^{2}-v^{2} f h=1
$$

(c) If a physical entity has speed u^{\prime} parallel to the x^{\prime} axis in S^{\prime}, show that its speed u parallel to the x-axis in S is

$$
u=\frac{u^{\prime}+v}{1+v u^{\prime}(h / f)}
$$

Using the second postulate of relativity (universal limiting speed c), show that $h=f / c^{2}$ is required and that the Lorentz transformation of the coordinates results. The universal limiting speed c is to be determined from experiment.

