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Problem 01 (Carroll, Problem 1.3)
Let w.l.o.g. c = 1. Consider an inertial system O, and 2 boosts along the x-axis with two different velocities
v′ = tanhϕ′, v′′ = tanhϕ′′, so that the Lorentz-Transformations are given by

Λ′ =


coshϕ′ − sinhϕ′ 0 0
− sinhϕ′ coshϕ′ 0 0

0 0 1 0
0 0 0 1

 & Λ′′ =


coshϕ′′ − sinhϕ′′ 0 0
− sinhϕ′′ coshϕ′′ 0 0

0 0 1 0
0 0 0 1


respectively. As is known, the new x′ & t′ axes are within system O described by t = x tanhϕ′ & t = x/ tanhϕ′

respectively, therefore oriented symmetrically along t = x (similarly for t′′ & x′′). Figure (0.1) shows the
6 t, x, t′, x′, t′′, x′′ axes of the 3 coordinate systems for appropriate ϕ′, ϕ′′-values, along with 3 events ABC,
observed in the order CBA, ABC & ACB in the systems O, O′ & O′′ respectively.

Figure 0.1: Space-time diagram on problem 01.

Problem 02 (Carroll, Problem 1.10)
The field-tensor Fµν is given by

(Fµν) =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


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(−+ ++ notation) transforming as

Fµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν ′
Fµν =

[(
∂x
∂x′

)T
· F · ∂x

∂x′

]
µ′ν′

(a) A rotation of the coordinate system about the y-axis by an angle ϑ is described by

x =


1 0 0 0
0 cosϑ 0 − sinϑ
0 0 1 0
0 sinϑ 0 cosϑ


︸ ︷︷ ︸

Λ

·x′

Thus

Fµ′ν′ =
(
ΛTFΛ

)
µ′ν′

=



0 −E1 cosϑ− E3 sinϑ −E2 E1 sinϑ− E3 cosϑ

E1 cosϑ+ E3 sinϑ 0 B3 cosϑ−B1 sinϑ −B2

E2 B1 sinϑ−B3 cosϑ 0 B1 cosϑ+B3 sinϑ

−E1 sinϑ+ E3 cosϑ B2 −B1 cosϑ−B3 sinϑ 0


(b) A boost along the z-axis with velocity v is described by

x′ =


γ 0 0 −vγ/c2
0 1 0 0
0 0 1 0
−vγ 0 0 γ


︸ ︷︷ ︸

Λ

·x

whereas
γ :=

1√
1− v2

c2

Consequently, the field-tensor transforms as

Fµ′ν′ =
(
ΛTFΛ

)
µ′ν′

=



0 −E1γ −B2vγ −E2γ +B1vγ E3v
2γ2/c2 − E3γ

2

E1γ +B2vγ 0 B3 −E1vγ/c
2 −B2γ

E2γ −B1vγ −B3 0 −E2vγ/c
2 +B1γ

E3γ
2 − v2γ2E3/c

2 E1vγ/c
2 +B2γ E2vγ/c

2 −B1γ 0


Problem 03
(a) Due to isotropy of space, the movement of S′ along x preserves the y & z coordinates, that is y′ = y, z′ = z.

Thus we shall restrict our thoughts to (t′, x′) = F(t, x), whereas F(t, x) = F(v2; t, x). Since non-accelerated
motions in S are also non-accelerated motions in S′, the transformation F maps straight lines to straight
lines and is thus affine. Matching the origins at t = t′ = 0, reduces F to the linear form(

t′

x′

)
=
(
g β
γ f

)
︸ ︷︷ ︸

F̂

·
(

t
x

)

As the origin x′ = 0 of S′ is seen to be moving at constant speed v in S, it follows(
t′

0

)
= F̂ ·

(
t
vt

)
(0.1)
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and in particular γt+ fvt = 0, or γ = −vf :

F̂ =
(

g β
−vf f

)
Consider now the two events (t = 0, x = 0) & (t = T, x = 0) in S, appearing in S′ as (t′ = 0, x′ = 0) and
(t′ = gT, x′ = −vfT ) respectively. Thus g can be interpreted as a factor of time dilation and should due to
isotropy of space not depend on the signum of v, that is, g(v) = g(−v) or g = g(v2).

Similarly, considering the two events (t = 0, x = −L) & (t = 0, x = L) in S, appearing in S′ as (t′ =
−βL, x′ = −fL) & (t′ = βL, x′ = fL) respectively, leads to an interpretation of f as a factor of length
dilation, thus f(v) = f(−v) or f = f(v2).

From Eq. (0.1) one also obtains t′ = (g + βv)t for the coordinates of the S′-origin. In analogy to above, it
follows from the isotropy of space that (g+βv) should not depend on the signum of v, thus β(v) = −β(−v),
or β(v) = −vh(v2) for some function h.

Thus, one obtains

(
t′

x′

)
=

 g(v2) −vh(v2)

−vf(v2) f(v2)

 · ( t
x

)

(b) Consistency of the initial transformation and its inverse require x = x(x′(x, t), t′(x, t)), that is

x = f

x′︷ ︸︸ ︷
[fx− vft] +fv

t′︷ ︸︸ ︷
[gt− vhx] =

[
f2 − v2fh

]
· x+

[
fgv − vf2

]
· t

As the above relation must hold for all x, t for some constant v, f, g, h, one can conclude

f2 − v2fh = 1 ∧ fg − f2 = 0︸ ︷︷ ︸
f 6=0
=⇒f=g

(0.2)

Note: Up to now, the Galileian transformation is not excluded, and is obtained in the case f = g = 1, h = 0!

(c) W.l.o.g. x′ = u′t′. The speed of the entity is given in S by

u =
dx(x′, t′)
dt(x′, t′)

x′=x′(t′)
=

dx(x′(t′), t′)
dt′

·
(
dt(x′(t′), t′)

dt′

)−1

=
d

dt′
(fu′t′ + vft′)

[
d

dt′
(gt′ + vhu′t′)

]−1
f=g
=

u′ + v

1 + vu′(h/f)

Now let w.l.o.g. v > 0 and assume

u ≥ u′ ∀ u′ (0.3)

Thus, by the second postulate of relativity (universal limiting speed c) one expects u u′→c−→ c, thus

lim
u′→c

u =
c+ v

1 + vc(h/f)
= c ⇒ f = hc2

On the other hand, if assumption (0.3) is false, that is, u < u′ for some u′, then by continuity of u(u′) and
the fact u(u′ = 0) ≥ u′, there would be a speed u′0 for which u(u′0) = u′0. But this is a contradiction, as in
the third inertial frame, moving at speed u′0 with respect to both S and S′, the later two would seem to be
equal! Therefore:

u =
u′ + v

1 + vu′/c2
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Moreover, relations (0.2) imply

f =
1√

1− v2

c2

that is, the Lorentz-Transformation

(
x′

t′

)
=


x−vtq
1− v2

c2

t−vx/c2q
1− v2

c2


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