Funktionentheorie

FSU Jena - SS 08

Lösungen

Stilianos Louca

6. Juli 2008

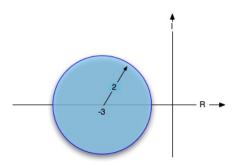
Inhaltsverzeichnis

0.1	Aufgabe 01	 3
0.2	Aufgabe 02	 3
0.3	Aufgabe 03	 3
0.4	Aufgabe 04	 4
0.5	Aufgabe 05	 4
0.6	Aufgabe 06	 4
0.7	Aufgabe 07	 Ę
0.8	Aufgabe 08	 6
0.9	Aufgabe 09	 6
0.10	Aufgabe 10	 7
0.11	Aufgabe 11	 7
0.12	Aufgabe 12	 8
0.13	Aufgabe 13	 8
0.14	Aufgabe 14	 8
0.15	Aufgabe 15	 Ć
0.16	Aufgabe 16	 Ć
0.17	Aufgabe 17	 Ć
0.18	Aufgabe 18	 10
0.19	Aufgabe 19	 10
0.20	Aufgabe 20	 11
0.21	Aufgabe 21	11
0.22	Aufgabe 22	12
0.23	Aufgabe 23	 12
0.24	Aufgabe 24	13
0.25	Aufgabe 25	 13
0.26	Aufgabe 26	 14
0.27	Aufgabe 27	 14
0.28	Aufgabe 28	 15
0.29	Aufgabe 29	15
	Aufgabe 30	16
0.31	Aufgabe 31	 16
0.32	Aufgabe 32	 17
0.33	Aufgabe 33	 17
0.34	Aufgabe 34	 18
0.35	Aufgabe 35	 18
0.36	Aufgabe 36	19
	Aufgabe 37	20
0.38	Aufgabe 38	 20
0.39	Aufgabe 39	21
0.40	Aufgabe 40	 21

0.41	Aufgabe 41																							22
0.42	Aufgabe 42																							22
0.43	Aufgabe 43																							22

0.1 Aufgabe 01

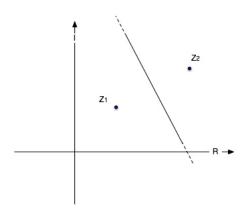
a) z liegt im (geschlossenen) Kreis mit Mittelpunkt -3 und Radius 2:



b) Umgestellt ist

$$|z - z_1| = |z - z_2|$$

d.h z hat den gleichen Abstand von z_1 und z_2 . Somit liegt z auf der, senkrecht zur Verbindungslinie von z_1, z_2 stehende und in der Mitte deren schneidenden, Geraden.



0.2 Aufgabe 02

$$(4+8i)(3-2i)^2 = (4+8i)(5-12i) = 116-8i$$

$$\frac{4+8i}{(3+2i)^2} = \frac{(4+8i)(3-2i)^2}{\left|3+2i\right|^4} = \frac{116}{225} - \frac{8}{225}i$$

c)

$$\left| \frac{17-i}{1+i} \right| = \left| \frac{(17-i)(1-i)}{\left|1+i\right|^2} \right| = \frac{1}{2} \left| 16-18i \right| = \left| 8-9i \right| = \sqrt{145}$$

0.3 Aufgabe 03

$$1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$1 + i\sqrt{3} = 2e^{i\frac{\pi}{3}}$$

c)

$$\sqrt{3} - i = 2e^{-i\frac{\pi}{6}}$$

0.4 Aufgabe 04

a) Suchen a, b so dass

$$(a+ib)^2 = -7 + 24i$$

ist, also

$$-7 + 24i = a^2 - b^2 + i2ab \rightarrow ab = 12 \wedge a^2 - b^2 = -7 \rightarrow b^4 - 7b^2 - 144 = 0$$

$$\rightarrow b^2 = 16 \rightarrow b = \pm 4 \land a = \pm 3$$

Somit ist

$$\sqrt{-7 + 24i} \in \{3 + i4, -3 - i4\}$$

b)

$$\sqrt[3]{i} = \sqrt[3]{e^{i\frac{\pi}{2}}} = e^{i\frac{\pi}{6} + i\frac{2}{3}k\pi}, \ k = 0, 1, 2$$

c)

$$\sqrt[3]{-1+i} = \sqrt[3]{\sqrt{2}e^{i\frac{3\pi}{4}}} = \sqrt[6]{2}e^{i\frac{\pi}{4}+i\frac{2}{3}k\pi} \ , \ k=0,1,2$$

d)

$$\sqrt[6]{-64} = 2\sqrt[6]{-1} = 2\sqrt[6]{e^{-i\pi}} = 2e^{-i\frac{\pi}{6} + i\frac{k\pi}{3}}, k = 0, 1, \dots 5$$

0.5 Aufgabe 05

Es ist

$$p(X) = X^{2} + (5 - 2i)X + 5(1 - i) = (X + (3 - i))(X + (2 - i)) \in \mathbb{C}[X]$$

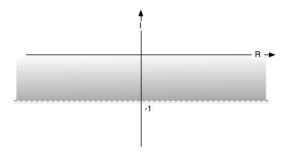
woraus man sofort die Nullstellen (i-3), (i-2) ablesen kann.

0.6 Aufgabe 06

a) Es ist

$$0 < \Re(iz) < 1 \Leftrightarrow -1 < \Im z < 0$$

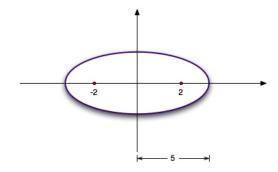
Also ergibt sich die betrachtete Punktmenge z als der einbeschattete Bereich in folgender Illustration:



b) Die die Gleichung

$$|z-2| + |z+2| = 5$$

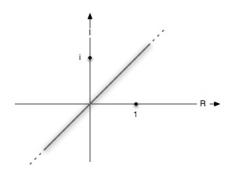
erfüllende Punktmenge ist definitionsgemäß genau die Ellipse mit Brennpunkten $z_{1,2}=\pm 2$ und Achsenlängen $a=\frac{5}{2}\;,\;b=\frac{3}{2}.$



c) Die die Gleichung

$$\left| \frac{z-i}{z-1} \right| = 1$$

erfüllende Punktmenge sind genau die Punkte die von $z_1=i$ und $z_2=1$ gleichen Abstand haben, also:



0.7 Aufgabe 07

Definieren: $\varphi=\arctan(y,x)$ als den Winkel $\varphi\in[0,2\pi)$ für den gilt: $\sin\varphi=y$, $\,\cos\varphi=x$.

a)
$$z + \zeta = -\frac{3}{2} + \frac{i}{2} \left(2 - \sqrt{3}\right) = \sqrt{4 - \sqrt{3}} \cdot e^{i \arctan(2 - \sqrt{3}, -3)} = \sqrt{4 - \sqrt{3}} e^{i\pi - i \arctan\frac{2 - \sqrt{3}}{3}}$$

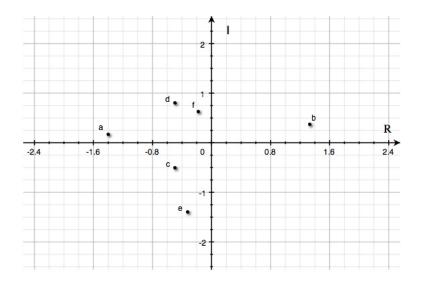
b)
$$z\zeta = \frac{1+\sqrt{3}}{2} + \frac{i}{2}(\sqrt{3}-1) = \sqrt{2} \cdot e^{i\frac{\pi}{12}}$$

c)
$$z^{-1} = \frac{-1-i}{(-1-i)(-1+i)} = \frac{-1-i}{2} = \frac{1}{\sqrt{2}} \cdot e^{i\frac{5\pi}{4}}$$

d)
$$\zeta^{-1} = \frac{\overline{\zeta}}{|\zeta|^2} = -\frac{1}{2} + \frac{i}{2}\sqrt{3} = e^{i\arctan(\sqrt{3},-1)} = e^{i\frac{2\pi}{3}}$$

e)
$$\frac{z}{\zeta} = \frac{z\overline{\zeta}}{|\zeta|^2} = z\overline{\zeta} = \frac{1-\sqrt{3}}{2} - \frac{i}{2}(1+\sqrt{3}) = \sqrt{2} \cdot e^{i\arctan(-2-\sqrt{3},2)} = \sqrt{2}e^{i\frac{17\pi}{12}}$$

$$\text{f)} \quad \frac{\zeta}{z} = \frac{\zeta \overline{z}}{|z|^2} = \frac{\overline{z}\overline{\zeta}}{2} = \frac{1 - \sqrt{3}}{4} + \frac{i}{4} \left(1 + \sqrt{3} \right) = \frac{1}{\sqrt{2}} \cdot e^{i \arctan(2 + \sqrt{3}, 2)} = \frac{1}{\sqrt{2}} e^{i \frac{7\pi}{12}}$$



0.8 Aufgabe 08

$$w = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = e^{i\frac{2\pi}{3}}$$

$$\to (aw + bw^2) \cdot (aw^2 + bw) = \left(ae^{i\frac{2\pi}{3}} + be^{i\frac{4\pi}{3}}\right) \cdot \left(ae^{i\frac{4\pi}{3}} + be^{i\frac{2\pi}{3}}\right)$$

$$= (a^2 + b^2) \cdot e^{i\frac{6\pi}{3}} + ab\left(e^{i\frac{4\pi}{3}} + e^{i\frac{8\pi}{3}}\right) = a^2 + b^2 + ab\left(\overline{e^{i\frac{2\pi}{3}}} + e^{i\frac{2\pi}{3}}\right)$$

$$= a^2 + b^2 + 2ab\Re e^{i\frac{2\pi}{3}} = a^2 + b^2 + 2ab\cos\frac{2\pi}{3} = a^2 + b^2 - ab$$

0.9 Aufgabe 09

a)

$$\cos 3\varphi = \frac{1}{2} \left[e^{i3\varphi} + e^{-i3\varphi} \right] = \frac{1}{2} \left[\left(e^{i\varphi} \right)^3 + \left(e^{-i\varphi} \right)^3 \right] = \frac{1}{2} \left[\left(\cos \varphi + i \sin \varphi \right)^3 + \left(\cos \varphi - i \sin \varphi \right)^3 \right]$$
$$= \cos^3 \varphi - 3 \cos \varphi \sin^2 \varphi$$

b)

$$\sin 3\varphi = \frac{1}{2i} \left[e^{i3\varphi} - e^{-i3\varphi} \right] = \frac{1}{2i} \left[\left(e^{i\varphi} \right)^3 - \left(e^{-i\varphi} \right)^3 \right] = \frac{1}{2i} \left[\left(\cos \varphi + i \sin \varphi \right)^3 - \left(\cos \varphi - i \sin \varphi \right)^3 \right]$$
$$= 3\cos^2 \varphi \sin \varphi - \sin^3 \varphi$$

0.10 Aufgabe 10

Suchen im Endeffekt eine partiell stetig differenzierbare Funktion $v:\mathbb{R}^2 \to \mathbb{R}$ die die Cauchy-Rieman Differentialgleichungen

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \ , \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

und die jeweiligen Anfangsbedingungen erfüllt.

a)

$$\begin{split} &\frac{\partial v}{\partial y} \stackrel{!}{=} \frac{\partial u}{\partial x} = 2x + y \ \rightarrow \ v(x,y) = 2xy + \frac{y^2}{2} + h(x) \\ &\frac{\partial v}{\partial x} = 2y + h'(x) \stackrel{!}{=} -\frac{\partial u}{\partial y} = 2y - x \ \rightarrow \ h'(x) = -x \ \rightarrow \ h(x) = -\frac{x^2}{2} + C \ , \ C \in \mathbb{R} \\ &\Rightarrow \ w(x,y) = \left(x^2 - y^2 + xy\right) + i\left(2xy + \frac{y^2}{2} - \frac{x^2}{2} + C\right) \end{split}$$

Anfangsbedingung: $w(0) = 0 \rightarrow C = 0 \rightarrow w(z) = \left(1 - \frac{i}{2}\right)z^2$

b)

$$\frac{\partial v}{\partial y} \stackrel{!}{=} \frac{\partial u}{\partial x} = 3x^2 + 12xy - 3y^2 \rightarrow v(x, y) = 3x^2y + 6xy^2 - y^3 + h(x)$$

$$\frac{\partial v}{\partial x} = 6xy + 6y^2 + h'(x) \stackrel{!}{=} -\frac{\partial u}{\partial y} = -6x^2 + 6xy + 6y^2 \rightarrow h'(x) = -6x^2 \rightarrow h(x) = -2x^3 + C , C \in \mathbb{R}$$

$$\Rightarrow w(x,y) = (x^3 + 6x^2y - 3xy^2 - 2y^3) + i(3x^2y + 6xy^2 - y^3 - 2x^3 + C)$$

Anfangsbedingung: $w(0) = 0 \rightarrow C = 0 \rightarrow w(z) = (1 - 2i)z^3$

0.11 Aufgabe 11

Es ist:

$$w = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$w^{2} = e^{i\frac{4\pi}{3}} = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

$$w^{3} = e^{i\frac{6\pi}{3}} = 1$$

$$w^{4} = w^{3} \cdot w = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

und somit

$$(a+b+c) (a+bw+cw^2) (a+bw^2+cw) = (a+b+c) [a^2+w(ab+ac)+w^2(ac+ab+bc)+w^3(b^2+c^2)+w^4bc]$$
$$= (a+b+c) [a^2+b^2+c^2-(ab+bc+ac)]$$

0.12 Aufgabe 12

a)

$$\sin n\varphi = \frac{1}{2i} \left[e^{in\varphi} - e^{-in\varphi} \right] = \frac{1}{2i} \left[\left(e^{i\varphi} \right)^n - \left(e^{-i\varphi} \right)^n \right] = \frac{1}{2i} \left[\left(\cos \varphi + i \sin \varphi \right)^n - \left(\cos \varphi - i \sin \varphi \right)^n \right]$$

$$= \frac{1}{2i} \left[\sum_{k=0}^n \binom{n}{k} \cos^{n-k} \varphi \cdot i^k \sin^k \varphi - \sum_{k=0}^n \binom{n}{k} \cos^{n-k} \varphi \cdot (-i)^k \sin^k \varphi \right] = \frac{1}{2i} \sum_{k=0}^n \binom{n}{k} i^k \cos^{n-k} \varphi \sin^k \varphi \cdot \left(1 - (-1)^k \right)$$

$$= \frac{1}{2i} \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2k+1} 2i^{2k+1} \cos^{n-2k+1} \varphi \sin^{2k+1} \varphi = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2k+1} i^{2k} \cos^{n-2k-1} \varphi \sin^{2k+1} \varphi$$

$$= \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2k+1} (-1)^k \cos^{n-2k-1} \varphi \sin^{2k+1} \varphi$$

$$= \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2k+1} (-1)^k \cos^{n-2k-1} \varphi \sin^{2k+1} \varphi$$

b) Analog ist:

$$\cos n\varphi = \frac{1}{2} \left[e^{in\varphi} + e^{-in\varphi} \right] = \frac{1}{2} \left[\left(e^{i\varphi} \right)^n + \left(e^{-i\varphi} \right)^n \right] = \frac{1}{2} \left[\left(\cos \varphi + i \sin \varphi \right)^n + \left(\cos \varphi - i \sin \varphi \right)^n \right]$$

$$= \frac{1}{2} \left[\sum_{k=0}^n \binom{n}{k} \cos^{n-k} \varphi \cdot i^k \sin^k \varphi + \sum_{k=0}^n \binom{n}{k} \cos^{n-k} \varphi \cdot (-i)^k \sin^k \varphi \right] = \frac{1}{2} \sum_{k=0}^n \binom{n}{k} i^k \cos^{n-k} \varphi \sin^k \varphi \cdot \left(1 + (-1)^k \right)$$

$$= \frac{1}{2} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} 2i^{2k} \cos^{n-2k} \varphi \sin^{2k} \varphi = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} (-1)^k \cos^{n-2k} \varphi \sin^{2k} \varphi$$

0.13 Aufgabe 13

$$\cos^3\varphi = \frac{1}{2^3} \left[e^{i\varphi} + e^{-i\varphi} \right]^3 = \frac{1}{8} \left[e^{i3\varphi} + 3e^{i2\varphi}e^{-i\varphi} + 3e^{i\varphi}e^{-i2\varphi} + e^{-i3\varphi} \right] = \frac{1}{8} \left[e^{i3\varphi} + 3e^{i\varphi} + 3e^{-i\varphi} + e^{-3i\varphi} \right]$$
$$\frac{1}{8} \left[\cos 3\varphi + i \sin 3\varphi + 3\cos\varphi + 3i \sin\varphi + 3\cos\varphi - 3i\sin\varphi + \cos3\varphi - i\sin3\varphi \right] = \frac{1}{4} \left[\cos 3\varphi + 3\cos\varphi \right]$$

0.14 Aufgabe 14

Beginnen mit der Identität $|x|^2 = x \cdot \overline{x}$ und schreiben

$$|z+w|^2 + |z-w|^2 = (z+w) \cdot \overline{(z+w)} + (z-w) \cdot \overline{(z-w)} = (z+w) \cdot (\overline{z}+\overline{w}) + (z-w) \cdot (\overline{z}-\overline{w})$$

$$= (z\overline{z} + w\overline{w} + z\overline{w} + w\overline{z}) + (z\overline{z} + w\overline{w} - z\overline{w} - w\overline{z}) = 2z\overline{z} + 2w\overline{w} = 2|z|^2 + 2|w|^2 \quad \Box$$

0.15 Aufgabe 15

$$\cos^4 x = \frac{1}{2^4} \left(e^{ix} + e^{-ix} \right)^4 = \frac{1}{16} \left(e^{i4x} + e^{-i4x} + 6 + 4e^{i2x} + 4e^{-i2x} \right) = \frac{1}{8} \left(\cos 4x + 4\cos 2x + 3 \right)$$
$$\sin^4 x = \cos^4 \left(\frac{\pi}{2} - x \right) = \frac{1}{8} \left(\cos(2\pi - 4x) + 4\cos(\pi - 2x) + 3 \right) = \frac{1}{8} \left(\cos 4x - 4\cos 2x + 3 \right)$$

0.16 Aufgabe 16

a) Suchen C^1 Lösungen der Cauchy Riemanschen DGL.

$$\frac{\partial u}{\partial x} \stackrel{!}{=} \frac{\partial v}{\partial y} = \frac{x^2 - y^2}{(x^2 + y^2)^2} = -\frac{(y^2 - x^2)}{(x^2 + y^2)^2} = -\frac{\partial}{\partial x} \frac{x}{x^2 + y^2} \rightarrow u(x, y) = -\frac{x}{x^2 + y^2} + h(y)$$

$$\frac{\partial u}{\partial y} = \frac{2xy}{(x^2 + y^2)^2} + h'(y) \stackrel{!}{=} -\frac{\partial v}{\partial x} = \frac{2xy}{(x^2 + y^2)^2} \rightarrow h'(y) = 0 \rightarrow h = C \in \mathbb{C}$$

$$\rightarrow u(x, y) = -\frac{x}{x^2 + y^2} + C$$

$$w(2) = 0 \rightarrow C = \frac{1}{2}$$

b)
$$\frac{\partial v}{\partial y} \stackrel{!}{=} \frac{\partial u}{\partial x} = e^x \left(x \cos y - y \sin y + \cos y \right) = e^x (x+1) \cos y - e^x y \sin y = \frac{\partial}{\partial y} \left[e^x (x+1) \sin y - e^x \left(\sin y - y \cos y \right) \right]$$

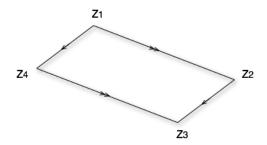
$$\rightarrow v(x,y) = e^x \left(x \sin y + y \cos y \right) + h(x)$$

$$\frac{\partial v}{\partial x} = e^x \left(x \sin y + y \cos y + \sin y \right) + h'(x) \stackrel{!}{=} -\frac{\partial u}{\partial y} = e^x \left(x \sin y + y \cos y + \sin y \right) \rightarrow h'(x) = 0 \rightarrow h(x) = C \in \mathbb{C}$$

$$\rightarrow v(x,y) = e^x \left(x \sin y + y \cos y \right) + C , \ w(0) = 0 \rightarrow C = 0$$

0.17 Aufgabe 17

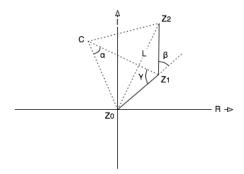
Assoziiert man \mathbb{C} mit dem \mathbb{R}^2 im Sinne von $x + iy \leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix}$ so ist durch folgende Illustration



ersichtlich: $z_4 = z_1 + (z_3 - z_2)$

0.18 Aufgabe 18

Seien $z_0 = r_0 e^{i\varphi_0}$, $z_1 = r_1 e^{i\varphi_1}$ und $z_2 = r_2 e^{i\varphi_2}$ der gewünschte neue Punkt. Setzen zunächst $z_0 = 0$ und betrachten folgende Illustration:



wobei C das Zentrum des gedachten n-Ecks sei. Wegen $\alpha = \frac{2\pi}{n}$ und $\gamma = \frac{\pi - \alpha}{2}$ ergibt sich

$$\beta = \pi - 2\gamma = \alpha = \frac{2\pi}{n}$$

Die Länge $L := |z_2 - z_1|$ ergibt sich durch geometrische Überlegungen als

$$L = |z_1 - z_0| \sqrt{2(1 + \cos \alpha)} = r_1 \sqrt{2 + 2\cos \frac{2\pi}{n}}$$

Zu erkennen ist, dass $\varphi_2 = \varphi_1 \pm \beta = \varphi_1 \pm \frac{2\pi}{n}$ ist.

Bemerke: Es gibt noch eine Fortsetzungsmöglichkeit in die symmetrisch zu $\overline{z_0z_1}$ liegende Richtung.

Somit ist z_2 gegeben durch

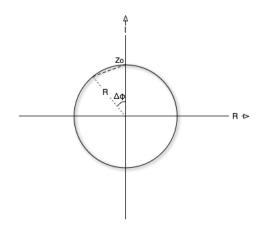
$$z_2 = r_1 \sqrt{2 + 2\cos\frac{2\pi}{n}} \cdot e^{i\varphi_1 \pm i\frac{2\pi}{n}}$$

Liegt jetzt z_0 beliebig, so wird ersetzt: $z_0' := 0$, $z_1' := z_1 - z_0$, dazu entsprechend z_2' wie oben berechnet und dann gesetzt $z_2 := z_0 + z_2'$, also:

$$z_2 = z_0 + |z_1 - z_2| \cdot \sqrt{2 + 2\cos\frac{2\pi}{n}} \cdot e^{i\arg(z_1 - z_0) \pm i\frac{2\pi}{n}}$$

0.19 Aufgabe 19

Setzen erstmal $c=0 \rightarrow z_0=iR$, nummerieren die Punkte des n-Ecks entgegen dem Urzeigersinn, mit $z_0,...,z_{n-1}$ und sehen dass sie den gleichen Betrag, aber jeweils vom vorigen eine Argument-Differenz von $\Delta \varphi = \frac{2\pi}{n}$ haben.



Somit ist der k-te Eckpunkt gegeben durch

$$z_k = Re^{i\frac{\pi}{2} + ik\frac{2\pi}{n}}$$

Ist jetzt c = a + ib, so ergeben sich die Punkte einfach durch eine Verschiebung, gemäß

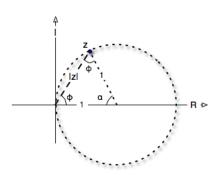
$$z_k = c + Re^{i\frac{\pi}{2} + ik\frac{2\pi}{n}}$$

0.20 Aufgabe 20

a)

$$z = 1 + i \tan \alpha = |z| e^{i \arctan \tan \alpha} = \frac{e^{i\alpha}}{\cos \alpha}$$

b) Der Punkt $z(\alpha) = 1 - \cos \alpha + i \sin \alpha$ liegt auf dem um c = 1 liegenden Einheitskreis:



Aus dem Bild ist sofort abzulesen: $\varphi = \frac{\pi - \alpha}{2}$ so dass sich ergibt

$$z = |z| e^{i\varphi} = \sqrt{2 - 2\cos\alpha} \cdot e^{i\frac{\pi}{2} - i\frac{\alpha}{2}}$$

0.21 Aufgabe 21

Für eine Funktion $f: \mathbb{C} \to \mathbb{C}$ bezeichnen wir mit $f_r: \mathbb{R} \to \mathbb{R}$ die Einschränkung von f auf \mathbb{R} . Im folgenden seien stets $k, n \in \mathbb{Z}$ und z = x + iy, $x, y \in \mathbb{R}$.

a) Suchen die $z \in \mathbb{C}$ für die gilt: $10^z = e^{z \ln 10} = -e$. Berechnen zuerst $z' = x' + iy' = \ln 10$, fordern also

$$e^{z'} = e^{x'}e^{iy'} = 10 \rightarrow e^{x'} = |10| = 10 \rightarrow x' = \ln_r 10, \ y' = 2\pi k \rightarrow z' = \ln_r 10 + i2\pi k$$

Somit folgt

$$e^{z \ln 10} = e^{x \ln_r 10 + 2\pi k y} e^{i(y \ln_r 10 + 2\pi k x)} = -e \ \rightarrow \ x \ln_r 10 + 2\pi k y = 1 \ \land \ y \ln_r 10 + 2\pi k x = \pi + 2\pi n x + 2\pi n$$

Auflösen ergibt

$$z = \log(-e) = \frac{\ln_r 10 - 2\pi k(\pi + 2\pi n)}{\ln_r^2 10 - 4\pi^2 k^2} + i \frac{(\pi + 2\pi n) \ln_r 10 - 2\pi k}{\ln_r^2 10 - 4\pi^2 k^2}$$

b) Gehen auch hier analog vor: Es muss gelten $e^z=e^xe^{iy}=-2$, das heißt:

$$e^x = |-2| = 2 \rightarrow x = \ln_r 2 \land y = \pi + 2\pi k$$

also
$$z = \ln(-2) = \ln_r 2 + i(\pi + 2\pi k)$$
.

c) Berechnen zuerst $z' = \ln 2$, suchen also z' = x' + iy', $x', y' \in \mathbb{R}$ mit $e^{z'} = e^{x'}e^{iy'} = 2$. Es folgt: $x' = \ln_r 2$, $y' = 2\pi k$. Somit ergibt sich:

$$2^i = e^{i \ln 2} = e^{-2\pi k} e^{i \ln_r 2}$$

d) Suchen $z \in \mathbb{C}$ so dass $10^z = e^{z \ln 10} = i$ ist. In (a) hatten wir ausgerechnet: $\ln 10 = \ln_r 10 + i2\pi k$. Also:

$$e^{x \ln_r 10 + 2\pi k y} e^{i(y \ln_r 10 + 2\pi k x)} = i \ \to \ x \ln_r 10 + 2\pi k y = 1 \ \land \ y \ln_r 10 + 2\pi k x = \frac{\pi}{2} + 2\pi n$$

Auflösen ergibt

$$z = \log i = \frac{\ln_r 10 - 2\pi k \left(\frac{\pi}{2} + 2\pi n\right)}{\ln_r^2 10 - 4\pi^2 k^2} + i \frac{\left(\frac{\pi}{2} + 2\pi n\right) \ln_r 10 - 2\pi k}{\ln_r^2 10 - 4\pi^2 k^2}$$

0.22 Aufgabe 22

Im folgenden sei stets $n \in \mathbb{N}$. Für eine Funktion $f : \mathbb{C} \to \mathbb{C}$ bezeichne f_r die Einschränkung von f auf \mathbb{R} , im Sinne von $f : \mathbb{R} \to \mathbb{R}$.

Annahme: $\log = \ln$.

a)
$$\ln \frac{1+i}{\sqrt{2}} = \ln_r \left| \frac{1+i}{\sqrt{2}} \right| + i \arg \left(\frac{1+i}{\sqrt{2}} \right) + 2\pi i n = 1 + i \left(\frac{\pi}{4} + 2\pi n \right)$$

b)
$$\ln(x+iy) = \ln_r |x+iy| + i \arg(x+iy) + 2\pi i n = \frac{1}{2} \ln |x^2 + y^2| + i (\arg(x+iy) + 2\pi i)$$

c)
$$e^{\pi i} = \cos \pi + i \sin \pi = -1$$

d)
$$i^{i} = e^{i \ln i} = e^{i(\ln_{r}|i| + i \arg(i) + 2\pi i n)} = e^{-\frac{\pi}{2} - 2\pi n}$$

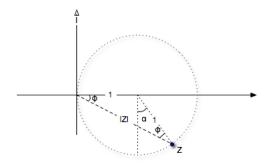
e) Definitionsgemäß ist

$$\sin(x+iy) = \frac{1}{2i} \left(e^{i(x+iy)} - e^{-i(x+iy)} \right) = \frac{1}{2i} \left(e^{ix-y} - e^{-ix+y} \right) = \frac{1}{2i} \left[\left(e^{-y} - e^{y} \right) \cos x + i \left(e^{-y} + e^{y} \right) \sin x \right]$$

 $= \sin x \cdot \cosh y + i \cos x \cdot \sinh y$

0.23 Aufgabe 23

Der Punkt $z(\alpha) = 1 + \sin \alpha - i \cos \alpha$ befindet sich auf dem Einheitskreis um den Punkt 1, gemäß



Aus der Graphik ist abzulesen:

$$\arg(z) = -\varphi = -\frac{1}{2} \left[\pi - \left(\frac{\pi}{2} + \alpha \right) \right] = -\frac{\pi}{4} + \frac{\alpha}{2}$$

Also ist

$$z = |z| e^{i \arg(z)} = \sqrt{2 + 2 \sin \alpha} \cdot e^{-i\frac{\pi}{4} + i\frac{\alpha}{2}}$$

0.24 Aufgabe 24

Man sieht sofort dass x = i keine Lösung ist. Alternativ, sieht mann dass

$$(x+i)^n = -(x-i)^n \to |x+i| = |x-i| \to x \in \mathbb{R}$$

gilt, also $(x-i) \neq 0$. Dann muss gelten:

$$(x+i)^n + (x-i)^n = 0 \rightarrow \left(\frac{x+i}{x-i}\right)^n = -1 \rightarrow \frac{x+i}{x-i} = e^{i\frac{\pi+2k\pi}{n}}, \ k = 0,..,n-1$$

woraus folgt:

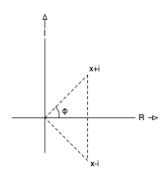
$$x = i \cdot \frac{e^{i\frac{\pi + 2k\pi}{n}} - 1}{1 + e^{i\frac{\pi + 2k\pi}{n}}} = \cot\left(\frac{(2k+i)\pi}{2n}\right)$$

Bemerkung:

$$\varphi := \arg(x+i) = -\arg(x-i) \rightarrow \arg\left(\frac{x+i}{x-i}\right) = \arg(x+i) - \arg(x-i) = 2\varphi$$

Doch:
$$\frac{x+i}{x-i} = e^{i\frac{\pi+2k\pi}{n}} \rightarrow \varphi = \frac{\pi+2\pi k}{2n}$$

$$\rightarrow \cot \varphi = \frac{x}{1} = x \rightarrow x = \cot \left(\frac{(2k+i)\pi}{2n} \right)$$



0.25 Aufgabe 25

Im folgenden sei stets $n \in \mathbb{Z}$.

a) Es bezeichne \ln_r den reellen Logarithmus.

$$\left(\frac{1+i}{\sqrt{2}}\right)^{-i} = \left(e^{i\frac{\pi}{4}}\right)^{-i} = e^{-i\left(\ln_r 1 + i\frac{\pi}{4} + i2\pi n\right)} \cong e^{\frac{\pi}{4} + 2\pi n}$$

b)

$$\tan\frac{\pi i}{2} = \frac{\sin\frac{\pi i}{2}}{\cos\frac{\pi i}{2}} = \frac{e^{i\frac{\pi i}{2}} - e^{-i\frac{\pi i}{2}}}{i\left(e^{i\frac{\pi i}{2}} + e^{-i\frac{i\pi}{2}}\right)} = i\frac{e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}}}{e^{-\frac{\pi}{2}} + e^{\frac{\pi}{2}}} = i\frac{\sinh\frac{\pi}{2}}{\cosh\frac{\pi}{2}} = i\tanh\frac{\pi}{2}$$

c)

 $\cos(x+iy) = \cos x \cos iy - \sin x \sin iy = \cos x \cosh y - i \sin x \sinh y$

$$\arctan xi = \frac{i}{2} \ln \left(\frac{1 - ixi}{1 + ixi} \right) = \frac{i}{2} \ln \left(\frac{1 + x}{1 - x} \right)$$
$$= \frac{i}{2} \left[\ln_r \left| \frac{1 + x}{1 - x} \right| + i \arg \left(\frac{1 + x}{1 - x} \right) + 2\pi i n \right] = \frac{i}{2} \ln_r \left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \arg \left(\frac{1 + x}{1 - x} \right) - \pi n$$

0.26 Aufgabe 26

Sei

$$\arctan: \mathbb{R} \cup \{\pm \infty\} \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Für eine beliebige Zahl $0\neq z\in\mathbb{C}$ ist

$$\left|\frac{z}{\overline{z}}\right| = \frac{z}{\overline{z}} \cdot \overline{\left(\frac{z}{\overline{z}}\right)} = \frac{z}{\overline{z}} \cdot \overline{\frac{z}{z}} = 1$$

$$\arg\left(\frac{z}{\overline{z}}\right) = \arg\left(\frac{z^2}{\overline{z}z}\right) = \arg\left(\frac{z^2}{|z|}\right) = \arg\left(z^2\right) = 2\arg(z)$$

so dass folgt:

$$\frac{1+ix}{1-ix} = \underbrace{\left[\frac{1+i\tan\alpha}{1-i\tan\alpha}\right]}_{1} \cdot \exp\left\{\frac{i}{n}\arg\left(\frac{1+i\tan\alpha}{1-i\tan\alpha}\right) + i\frac{2\pi k}{n}\right\} =: \Psi_n, \ k = 0,..,n-1$$

$$\Psi_n = \exp\left\{i\frac{2}{n}\arg(1+i\tan\alpha) + i\frac{2\pi k}{n}\right\} = \exp\left\{i2\frac{\arctan(\tan\alpha) + \pi k}{n}\right\}$$

$$\rightarrow x = i \cdot \frac{1 - \Psi_n}{1 + \Psi_n} = i \cdot \frac{1 - \exp\left(i2\frac{\arctan(\tan\alpha) + \pi k}{n}\right)}{1 + \exp\left(i2\frac{\arctan(\tan\alpha) + \pi k}{n}\right)} = \tan\left(\frac{\arctan(\tan\alpha) + \pi k}{n}\right)$$

0.27 Aufgabe 27

Wählen für die Kreisbahn (im Urzeigersinn) die Parametrisierung

$$\gamma: [0,\pi] \to \mathbb{C} , \ \gamma(t) = e^{i\frac{3\pi}{2} - it}$$

und schreiben

$$\int\limits_{\gamma} |z| \ dz = \int\limits_{0}^{\pi} \underbrace{\left| e^{i\frac{3\pi}{2} - it} \right|}_{1} \ \dot{\gamma}(t) \ dt = \int\limits_{0}^{\pi} \frac{d}{dt} \gamma(t) \ dt = \gamma(\pi) - \gamma(0) = 2i$$

Für die geradlinige Kurve wählen die Parametrisierung

$$z(t) = it, -1 \le t \le 1$$

und schreiben

$$\int\limits_{\gamma}|z|\ dz=\int\limits_{-1}^{1}|t|\cdot i\ dt=i$$

Bemerke: Zufälligerweise ergibt sich durch Integration auf der anderen Hälfte des Einheitskreises (entgegen dem Urzeigersinn) genau das gleiche Ergebnis 2i.

0.28 Aufgabe 28

Sei

$$B_r(z_0) := \{ z \in \mathbb{C} : |z - z_0| \le r \}$$

a) Die Funktion $f(z) := \sin z$ ist holomorph in $\mathbb C$ und es ist $-i \in B_2(0)$, so dass sich mit der Cauchy-Integralformel ergibt

$$\int_{|z|=2} \frac{\sin z}{z+i} dz = \int_{\partial B_2(0)} \frac{f(z)}{z-(-i)} dz = 2\pi i f(-i) = -2\pi i \sin i = 2\pi \sinh(1)$$

b) Die Funktion $f(z) := \frac{1}{z - i\pi}$ ist in $B_3(-2i)$ holomorph und es ist $-i\pi \in B_3(-2i)$, so dass durch die Cauchy-Integralformel folgt

$$\int_{|z+2i|=3} \frac{dz}{z^2 + \pi^2} = \int_{|z+2i|} \frac{dz}{(z+i\pi)(z-i\pi)} = \int_{\partial B_3(-2i)} \frac{f(z)}{z - (-i\pi)} dz = 2\pi i f(-i\pi) = -1$$

c) Es ist

$$\int\limits_{|z|=2} \frac{dz}{z^4-1} = \int\limits_{|z|=2} \left[\frac{1}{4(z-1)} - \frac{1}{4(z+1)} - \frac{1}{4i(z-i)} + \frac{1}{4i(z+i)} \right] dz$$

$$=\frac{1}{4}\int\limits_{|z|=2}\frac{dz}{z-1}-\frac{1}{4}\int\limits_{|z|=2}\frac{dz}{z+1}-\frac{1}{4i}\int\limits_{|z|=2}\frac{dz}{z-i}+\frac{1}{4i}\int\limits_{|z|=2}\frac{dz}{z+i}=0$$

0.29 Aufgabe 29

a)

$$\int\limits_{\gamma} |z|^2 \ dz = \int\limits_{0}^{2\pi} |z(t)|^2 \dot{z}(t) \ dt = \int\limits_{0}^{2\pi} \left(a^2 \cos^2 t + b^2 \sin^2 t\right) \cdot \left(-a \sin t + ib \cos t\right) \ dt$$

$$= \int_{0}^{2\pi} \left(iba^{2} \cos^{3} t - ab^{2} \sin^{3} t - a^{3} \cos^{2} t \sin t + ib^{3} \cos t \sin^{2} t \right) dt$$

$$= \underbrace{\int\limits_{0}^{2\pi} \left(iba^{2}\cos^{3}t - ab^{2}\sin^{3}t\right) \ dt}_{0} + \underbrace{\int\limits_{0}^{2\pi} \left[\frac{a^{3}}{3}\frac{d}{dt}\left(\cos^{3}t\right) + \frac{ib^{3}}{3}\frac{d}{dt}\left(\sin^{3}t\right)\right] \ dt}_{0} = 0$$

b)

$$\int_{|z|=r} |z| |dz| = r \int_{|z|=r} |dz| = 2\pi r^2$$

$$z(t) := z_1 + t \cdot \underbrace{(z_2 - z_1)}_{\lambda}, \ t \in [0, 1]$$

$$\int_{\gamma} \frac{z}{\left(z^2+4\right)^2} dz = \int_{0}^{1} \frac{z_1+\lambda t}{\left[\left(z_1+\lambda t\right)^2+4\right]^2} \cdot \lambda dt = -\frac{1}{2} \int_{0}^{1} \frac{d}{dt} \left[\left(z_1+\lambda t\right)^2+4\right]^{-1} dt$$

$$= -\frac{1}{2} \left[\frac{1}{\left[(z_1 + \lambda t)^2 + 4 \right]} \right]_{t=0}^{1} = \frac{1}{2} \left[\frac{1}{z_1^2 + 4} - \frac{1}{z_2^2 + 4} \right]$$

Variante: Es ist

$$F(z) := -\frac{1}{2} \frac{1}{z^2 + 4} = \int \frac{z}{(z^2 + 4)^2} dz$$

Stammfunktion von $\frac{z}{(z^2+4)^2}$ mit F holomorph in $\mathcal{C} \setminus \{\pm 2i\}$. Somit ergibt sich

$$\int_{z_1}^{z_2} z(t) \ dz = F(z_2) - F(z_1) = \frac{1}{2} \left[\frac{1}{z_1^2 + 4} - \frac{1}{z_2^2 + 4} \right]$$

0.30 Aufgabe 30

Betrachten die Funktion

$$f(z) := \frac{e^z}{z}$$

Diese ist im Gebiet $\mathbb{C} \setminus \{0\}$ holomorph da z, e^z beide holomorph sind. Mit

$$f'(z) = e^z \frac{z-1}{z^2}$$
, $f''(z) = \frac{e^z}{z^3} [z^2 - 2z + 2]$

ergibt sich durch die Cauchysche Integralformel:

$$\int_{|z-\frac{3}{2}|=1} \frac{e^z}{z(z-1)^3} dz = \pi i \cdot \underbrace{\frac{2!}{2\pi i}}_{C_1\left(\frac{3}{2}\right)} \underbrace{\int_{C_1\left(\frac{3}{2}\right)} \frac{f(z)}{(z-1)^3}}_{f^{(2)}(1)} = \pi i f^{(2)}(1) = i\pi e$$

0.31 Aufgabe 31

Wählen die Parametrisierung

$$z(t) = e^{it} = \underbrace{\cos t}_{x(t)} + i \underbrace{\sin t}_{y(t)}, \ i \in [0, 2\pi]$$

und legen los:

$$\int_{\partial E} z^2 dx + z^{-2} dy = \int_{0}^{2\pi} \left(z^2(t)\dot{x} + z^{-2}(t)\dot{y} \right) dt = \int_{0}^{2\pi} \left(-e^{i2t}\sin t + e^{-i2t}\cos t \right) dt$$

$$= \frac{1}{2} \int_{0}^{2\pi} \left[i \left(e^{3it} - e^{it} \right) + \left(e^{-it} + e^{-3it} \right) \right] dt = 0$$

0.32 Aufgabe 32

a) Es ist

$$\Omega := \int\limits_{|z|=3} \frac{e^{\alpha z}}{z^2 \left(z^2 + 2z + 2\right)} \ dz = \int\limits_{|z|=3} e^{\alpha z} \cdot \left[-\frac{1}{2z} + \frac{1}{2z^2} + \frac{1}{4(z - (-1+i))} + \frac{1}{4(z - (-1-i))} \right] \ dz$$

Betrachten wir die Funktion $f(z) := e^{\alpha z}$, so ist diese holomorph in \mathbb{C} . Die Punkte 0, (-1+i), (-1-i) liegen jedoch alle in $|z| \leq 3$, so dass sich mit der Cauchy-Integralformel ergibt

$$\Omega = -\frac{1}{2} \underbrace{\int\limits_{|z|=3} \frac{e^{\alpha z}}{z} \ dz}_{2\pi i f(0)} + \underbrace{\frac{1}{2} \int\limits_{|z|=3} \frac{e^{\alpha z}}{z^2} \ dz}_{2\pi i f^{(1)}(0)} + \underbrace{\frac{1}{4} \int\limits_{|z|=3} \frac{e^{\alpha z}}{z - (-1+i)} \ dz}_{2\pi i f(-1+i)} + \underbrace{\frac{1}{4} \int\limits_{|z|=3} \frac{e^{\alpha z}}{z - (-1-i)} \ dz}_{2\pi i f(-1-i)}$$

$$= i\pi \left(\alpha - 1 + e^{-\alpha}\cos\alpha\right)$$

b) Betrachten die Funktion

$$f(z) := \frac{1}{(z-b)^m}$$

Diese ist in $\mathbb{C} \setminus \{b\} \supset B_r(0)$ holomorph, da $(z-b)^m$ holomorph. Mit

$$f^{(k)} = (-1)^k \cdot (z-b)^{-m-k} \cdot \frac{(m+k-1)!}{(m-1)!}$$

folgt nach der Cauchy-Integralformel

$$\int_{|r|=1} \frac{dz}{(z-a)^n (z-b)^m} = \frac{2\pi i}{(n-1)!} \cdot \underbrace{\frac{(n-1)!}{2\pi i} \int_{C_r(0)} \frac{f(z) dz}{(z-a)^n}}_{f^{(n-1)}(a)}$$

$$= \frac{2\pi i}{(n-1)!} \cdot f^{(n-1)}(a) = 2\pi i \cdot (-1)^{n-1} \cdot \frac{(m+n-2)}{(m-1)! \cdot (n-1)!} \cdot (a-b)^{1-m-n}$$

0.33 Aufgabe 33

Bemerkung: Beschränken arctan : $\mathbb{R} \cup \{\pm \infty\} \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

a)

$$z = \frac{1+i}{2-3i} = \frac{(1+i)(2+3i)}{(2-3i)(2+3i)} = \frac{5i-1}{13}$$

$$|z| = \sqrt{\frac{2}{13}} \ , \ \arg(z) = \pi - \arctan 5$$

b)

$$z = \left[e^{i\left(\pi - \arctan\sqrt{3}\right)}\right]^{201} = \left(e^{i\frac{2\pi}{3}}\right)^{201} = e^{i134\pi} = e^{i2\pi \cdot 67} = 1, \ |z| = 1, \ \arg(z) = 0$$

c)
$$z = (1+i)^{2n} + (1-i)^{2n} = \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^{2n} + \left(\sqrt{2}e^{-i\frac{\pi}{4}}\right)^{2n} = 2^n e^{i\frac{\pi n}{2}} + 2^n e^{-i\frac{\pi n}{2}} = 2^{n+1}\cos\frac{\pi n}{2}$$

0.34 Aufgabe 34

a) Es ist

$$\sum_{k=0}^{\infty} \frac{z^{3k}}{2^k} = \sum_{k=0}^{\infty} \left(\frac{z^3}{2}\right)^k$$

Bekanntlich ist der Konvergenzradius von $\sum_{k=0}^{\infty} \alpha^k$ genau $|\alpha| < 1$. Somit muss

$$|z| < \sqrt[3]{2}$$

sein

Alternativ: Formel von Cauchy-Hadamar. Betrachten

$$\sum_{n=0}^{\infty}c_nz^n$$
 , $\,L:=\limsup_{n\to\infty}\sqrt[n]{|c_n|}\,\,\to\,\, {\rm Konvergenz radius:}\,\,\rho:=\frac{1}{L}$

In unserem Fall

$$c_n = \begin{cases} 0 & : n \neq 3k \\ \frac{1}{2^{n/3}} & : n = 3k \end{cases} \rightarrow \sqrt[n]{|c_n|} = \begin{cases} 0 & : n \neq 3k \\ \frac{1}{3/2} & : n = 3k \end{cases}$$

also

$$L = \frac{1}{\sqrt[3]{2}} \rightarrow \text{Konvergenz radius: } \rho = \sqrt[3]{2}$$

b) Analog zu vorhin, betrachten:

$$\sum_{k=0}^{\infty} \underbrace{\left(\frac{3k^2 + k}{2k^2 + 1}\right)^k}_{c_i} z^k , L = \limsup_{k \to \infty} \underbrace{\sqrt[k]{|c_k|}}_{-\frac{3}{2}} = \frac{3}{2} \ \Rightarrow \ \rho = \frac{2}{3}$$

c) Nennen:

$$a_n := \frac{n!}{3^n (2n)!} (z+1)^n$$

Dann ist:

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)! \left|z+1\right|^{n+1} 3^n (2n)!}{3^{n+1} \left[2(n+1)\right]! n! \left|z+1\right|^n} = \frac{n+1}{(2n+2)(2n+1)} \left|z+1\right| \to 0 \ \forall \ z$$

das heißt der Konvergenzradius ist ∞ (Quotientenkriterium).

Variante: Majorantenkriterium:

$$\left| \sum_{n=0}^{\infty} \frac{n!}{3^n (2n)!} (z+1)^n \right| \leq \sum_{n=0}^{\infty} \left| \frac{n!}{3^n (2n)!} (z+1)^n \right| \leq \sum_{n=0}^{\infty} \frac{n!}{(2n)!} |z+1|^n \leq \sum_{n=0}^{\infty} \frac{1}{n!} |z+1|^n = \exp(|z+1|) < \infty \quad \forall \ z \in \mathbb{C}$$

0.35 Aufgabe 35

a) Es ist

$$f(z) = \frac{3z^2 + 1}{z + 1} = 3z - 3 + \frac{4}{z + 1} \cong 3z - 3 + \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} \cdot \frac{n!(-1)^n}{(z_0 + 1)^{n+1}} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(z - z_0)^n}{n!} f^{(n)}(z_0) = 3z - 3z - 3z$$

$$z_0 = 2 \rightsquigarrow f(z) \cong 3 + 3(z - 2) + 4\sum_{n=0}^{\infty} \frac{(z - 2)^n (-1)^n}{3^{n+1}} = \frac{13}{3} + \frac{23}{9}(z - 2) + 4\sum_{n=2}^{\infty} \frac{(z - 2)^n (-1)^n}{3^{n+1}}$$

$$z_0 = i \implies 3z - 3 + 4\sum_{n=0}^{\infty} \frac{(-1)^n}{(1+i)^{n+1}} (z-i)^n = -(1+i) + (3+2i)(z-i) + 4\sum_{n=2}^{\infty} \frac{(-1)^n}{(1+i)^{n+1}} (z-i)^n$$

Da f in z=-1 eine Singularität hat, jedoch sonst holomorph ist, ist der Konvergenzradius der Potenzreihe um $z_0=2$ bzw. $z_0=i$ genau $\rho=3$ bzw. $\rho=\sqrt{2}$.

Variante:

$$\frac{1}{z+1} = \frac{1}{(z-2)+3} = \frac{1}{3} \frac{1}{\frac{z-2}{3}+1} = \frac{1}{3} \underbrace{\frac{1}{1-\left(-\frac{z-2}{3}\right)}}_{\frac{1}{1-q}} = \frac{1}{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n} (z-2)^n$$

b) Da die Funktion f an den Punkten $\pm i$ Polstellen hat, und sonst holomorph ist, ergibt sich der Konvergenzradius als $\rho = 1$. Innerhalb dessen gilt dann

$$\frac{1}{(z-i)^2} |_{z_0} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{n!} \cdot f^{(n)}(z_0) = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{n!} \cdot \frac{(-1)^n (n+1)!}{(z_0-i)^{n+2}!} = \sum_{n=0}^{\infty} \frac{(n+1)(-1)^n}{(z_0-i)^{n+2}!} \cdot (z-z_0)^n$$

$$\frac{1}{(z+i)(z-i)} = \frac{1}{z^2+1} = \frac{1}{1-(-z^2)} \stackrel{|z|<1}{=} \sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n z^{2n}$$

$$\frac{z^2}{(z+i)(z-i)^2} \stackrel{*}{=} \frac{z^2}{2i} \cdot \left[\frac{1}{(z-i)^2} - \frac{1}{(z+i)(z-i)} \right] = \frac{z^2}{2i} \cdot \left[\sum_{n=0}^{\infty} \frac{(n+1)(-1)^n}{(-i)^{n+2}} \cdot z^n - \sum_{n=0}^{\infty} (-1)^n z^{2n} \right]$$

$$= -\frac{z^2}{2i} \sum_{n=0}^{\infty} \left[\frac{(n+1)}{i^n} \cdot z^n + (-1)^n z^{2n} \right] = \frac{i}{2} \sum_{n=0}^{\infty} \left[\frac{(n+1)}{i^n} \cdot z^{n+2} + (-1)^n z^{2(n+1)} \right]$$

(*) Ansatz:
$$\frac{1}{(z+i)(z-i)^2} = \frac{Az+B}{(z+i)(z-i)} + \frac{C}{(z-i)^2}$$

0.36 Aufgabe 36

Nennen $a_n := n^2 + b^n$ und wenden das Quotientenkriterium an: Der Konvergenzradius ρ ergibt sich dann gemäß

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n^2 + b^n}{(n+1)^2 + b^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n^2}{(n+1)^2 + b^{n+1}} + \frac{b^n}{(n+1)^2 + b^{n+1}} \right|$$

$$= \left| \lim_{n \to \infty} \frac{n^2}{(n+1)^2 + b^{n+1}} + \lim_{n \to \infty} \frac{b^n}{(n+1)^2 + b^{n+1}} \right|$$

Unterscheiden zwei Fälle:

Fall: $|b| \leq 1$. Dann ist

$$\left| \lim_{n \to \infty} \frac{n^2}{(n+1)^2 + b^{n+1}} \right| = \lim_{n \to \infty} \frac{n^2}{|(n+1)^2 + b^{n+1}|} = \frac{1}{\left| \lim_{n \to \infty} \frac{(n+1)^2}{n^2} + \lim_{n \to \infty} \frac{b^{n+1}}{n^2} \right|} = \frac{1}{|1+0|} = 1$$

und

$$\lim_{n \to \infty} \left| \frac{b^n}{(n+1)^2 + b^{n+1}} \right| = \underbrace{\frac{\displaystyle \lim_{n \to \infty} |b|^n}{\displaystyle \lim_{n \to \infty} \underbrace{\left| (n+1)^2 + b^{n+1} \right|}_{\geq (n+1)^2 - |b^{n+1}|}}_{\leq (n+1)^2 - |b^{n+1}|} = 0$$

das heißt $\rho = 1$.

Fall: |b| > 1. Dann ist

$$\lim_{n \to \infty} \frac{n^2}{|(n+1)^2 + b^{n+1}|} = \frac{1}{\lim_{n \to \infty} \left| \frac{(n+1)^2}{n^2} + \frac{b^{n+1}}{n^2} \right|} \le \frac{1}{\left| \lim_{n \to \infty} \frac{|b|^{n+1}}{n^2} - \lim_{n \to \infty} \frac{(n+1)^2}{n^2} \right|} = \frac{1}{\infty - 1} = 0$$

und

$$\lim_{n \to \infty} \left| \frac{b^n}{(n+1)^2 + b^{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \left| \frac{(n+1)^2}{b^n} + b \right|} = \frac{1}{\left| \lim_{n \to \infty} \frac{(n+1)^2}{b^n} + b \right|} = \frac{1}{0 + |b|} = \frac{1}{|b|}$$

das heißt $\rho = \frac{1}{|b|}$

0.37 Aufgabe 37

a) Es ist

$$\sum_{k=0}^{\infty} a_k z^{2k} = \sum_{k=0}^{\infty} a_k (z^2)^k$$

das heißt die Reihe ist konvergent für $|z^2| < \rho$ und divergent für $|z^2| > \rho$. Somit ist der Konvergenzradius genau $\rho_1 = \sqrt{\rho}$.

Variante: Sei $L := \limsup_{k \to \infty} \sqrt[k]{a_k}$. Dabei ist

$$\sum_{k=0}^{\infty} a_k z^{2k} = \sum_{k=0}^{\infty} c_k z^k , c_k = \begin{cases} a_{\frac{k}{2}} & k \text{ gerade} \\ 0 & \text{sonst} \end{cases}$$

und somit

$$L_1 := \limsup_{k \to \infty} \sqrt[k]{|c_k|} = \limsup_{k \to \infty} \sqrt[2k]{|a_k|} = \sqrt{L} \to \rho_1 = \sqrt{\rho}$$

b) Der Konvergenzradius dieser Reihe ist nach dem Quotientenkriterium gegeben durch

$$\rho_2 = \lim_{k \to \infty} \left| \frac{a_k^2}{a_{k+1}^2} \right| = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|^2 = \left[\lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| \right]^2 = \rho^2$$

da bekanntlich gilt:

$$\rho = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$$

Variante: Setzen $c_k := a_k^2$, dann ist

$$\sum_{k=0}^{\infty} a_k^2 z^k = \sum_{k=0}^{\infty} c_k z^k$$

und somit

$$L_2 = \limsup_{k \to \infty} \sqrt[k]{c_k} = \left(\limsup_{k \to \infty} \sqrt[k]{|a_k|}\right)^2 = L^2 \to \rho_2 = \rho^2$$

0.38 Aufgabe 38

a) $\sin^2 z = \frac{1}{2} - \frac{1}{2}\cos 2z = \frac{1}{2} - \frac{1}{2}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \cdot (2z)^{2k} = \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} 2^{2k-1} \cdot z^{2k}$

b)

$$\cos\left(z^2 - 1\right) = \cos z^2 \cdot \cos 1 + \sin z^2 \cdot \sin 1 = \cos 1 \cdot \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} (z^2)^{2k} + \sin 1 \cdot \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (z^2)^{2k+1}$$

$$= \sum_{k=0}^{\infty} (-1)^k \cdot \left[\frac{\cos 1}{(2k)!} \cdot z^{4k} + \frac{\sin 1}{(2k+1)!} \cdot z^{4k+2} \right]$$

0.39 Aufgabe 39

a) Die Funktion $f(z) = \frac{1-\cos z}{z^2}$ ist überall außer in $z_0 = 0$ holomorph. Betrachten wir die Potenzreihe

$$g(z) := -\sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} \cdot z^{2(k-1)}$$

so ist diese überall konvergent also ganz, und es gilt für $z \neq 0$:

$$f(z) = \frac{1}{z^2} - \frac{1}{z^2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \cdot z^{2k} = \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} \cdot z^{2(k-1)} = g(z)$$

Somit ist z_0 eine hebbare Singularität.

b) Die Funktion $f(z) = e^{\frac{1}{z}} + \frac{1}{z}$ ist überall außer in $z_0 = 0$ holomorph. Durch

$$\lim_{n \to \infty} f\left(\frac{1}{n}\right) = \lim_{n \to \infty} \left(e^n + n\right) = \infty$$

ist ersichtlich: $z_0=0$ ist keine hebbare Singularität. Ferner ist $z_0=0$ auch kein Pol (n-ter Ordnung), da für alle $n\in\mathbb{N}$ gilt: Der Grenzwert

$$\lim_{z \to 0} z^n f(z)$$

existiert nicht oder ist 0:

$$n \ge 2: \lim_{\mathbb{R} \ni h \to 0} (ih)^n f(ih) = \lim_{h \to 0} \underbrace{e^{-i\frac{1}{h}}}_{\text{beschränkt}} \underbrace{(ih)^n}_{\to 0} + \underbrace{(ih)^{n-1}}_{\to 0} = 0$$

$$n = 1: \lim_{\mathbb{R}\ni h\to 0} h\cdot f(h) = 1 + \underbrace{\lim_{h\to 0} e^{\frac{1}{h}}h}_{\text{bekannt}} = \infty$$
bekannt
aus reeller
Analysis

Somit ist $z_0 = 0$ eine wesentliche Singularität.

0.40 Aufgabe 40

a) Der konvergenzradius ρ ergibt sich nach dem Quotientenkriterium gemäß

$$\rho = \lim_{n \to \infty} \left| \frac{(n!)^2 (2n+2)!}{(2n)! \left[(n+1)! \right]^2} \right| = \lim_{n \to \infty} \left| \frac{(2n+1)(2n+2)}{(n+1)^2} \right| = \lim_{n \to \infty} \left| \frac{2n+1}{n+1} \right| \cdot \lim_{n \to \infty} \left| \frac{2n+2}{n+1} \right| = 2 \cdot 2 = 4$$

b) Unter Verwendung der Formel von Cauchy-Hadamar schreiben wir:

$$L := \limsup_{n \to \infty} \sqrt[n]{|\cos n|} = \lim_{n \to \infty} \sup_{k \ge n} \sqrt[n]{|\cos k|} = 1$$

und erhalten so den Konvergenzradius

$$\rho = \frac{1}{L} = 1$$

0.41 Aufgabe 41

a) In Aufgabe 37 (b) sahen wir: Der Konvergenzradius ρ_1 von

$$\sum_{k=0}^{\infty} a_k^2 z^k$$

ist gegeben durch ρ^2 . nach Aufgabe 37 (a) ist dann der Konvergenzradius von

$$\sum_{k=0}^{\infty} a_k^2 z^{2k} = \sum_{k=0}^{\infty} b_k z^{2k}$$

gegeben durch $\rho_2 = \sqrt{\rho_1} = \rho$.

b) Der Konvergenzradius ρ ist nach dem Quotientenkriterium gegeben durch

$$\rho = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$$

Fall: $\rho > 0$. Dann ergibt sich der Konvergenzradius ρ_1 von $\sum_{k=0}^{\infty} \frac{a_k}{k!} z^k$ gemäß

$$\rho_1 = \lim_{k \to \infty} \left| \frac{a_k(k+1)!}{a_{k+1}k!} \right| = \lim_{k \to \infty} k \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} k \cdot \underbrace{\lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|}_{a} = \infty$$

Variante: Da der Konvergenzradius $\rho > 0$ ist, sind die a_n beschränkt: $M := \sup_{n \in \mathbb{N}} |a_n|$. Somit ist dann für $z \in \mathbb{C}$:

$$\left| \sum_{k=0}^{\infty} \frac{a_k}{k!} z^k \right| \le \sum_{k=0}^{\infty} \frac{|a_k|}{k!} |z|^k \le M \cdot \sum_{k=0}^{\infty} \frac{|z|^k}{k!} = M \cdot \underbrace{e^{|z|}}_{<\infty} < \infty$$

Fall: $\rho = 0$. Dann kann allgemein keine Aussage getroffen werden.

0.42 Aufgabe 42

0.43 Aufgabe 43

a) Die Funktion $f(z) := \frac{z}{z^2 + 1}$ hat in $z_0 = -1, z_1 = 1$ jeweils eine Polstelle 1. Ordnung, denn:

$$\lim_{z \to z_0} (z - z_0) f(z) = \lim_{z \to -1} \frac{z(z+1)}{z^2 + 1} = \lim_{z \to -1} \frac{z}{z - 1} = \frac{1}{2}$$

$$\lim_{z \to z_1} (z - z_1) f(z) = \lim_{z \to 1} \frac{z(z - 1)}{z^2 + 1} = \lim_{z \to 1} \frac{z}{z + 1} = \frac{1}{2}$$

b) Betrachten die Funktion

$$g(z) := z - z^3 = z(1-z)(1+z)$$

Diese ist auf $\mathbb C$ holomorph und besitzt in den Punkten $z_0=0,\ z_1:=1,\ z_2:=-1$ Nullstellen 1. Ordnung. Somit besitzt

$$f(z) = \frac{1}{z - z^3} = \frac{1}{g}$$

an diesen Stellen Pole 1. Ordnung.

c) Die einzigen Singularitäten sind die Punkte z = x + iy für die gilt:

$$\sin(x+iy) = 0 \to e^{-y}e^{ix} = e^{-y}e^{-ix} \to y = 0 \land x = \pi k, k \in \mathbb{N}$$

Betrachten die Funktion

Betrachten die Funktion
$$g(z) := \sin z = (-1)^k \cdot \sin(z - \pi k) = (-1)^k \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot (z - \pi k)^{2n+1} = (z - \pi k) \cdot \underbrace{(-1)^k \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot (z - \pi k)^{2n}}_{\substack{\tilde{g}_k(z) \\ \text{Konvergenzradius } \infty \\ \rightarrow \text{holomorph}}}$$

wobei \tilde{g}_k an der Stelle $z_k = \pi k$ genau $(-1)^k$ und somit in einer Umgebung von z_k nicht 0 ist. Somit hat g an jedem Punkt z_k eine Nullstelle 1. Ordnung, weshalb

$$\frac{1}{\sin z} = \frac{1}{g(z)}$$

in z_k einen Pol 1. Ordnung hat.