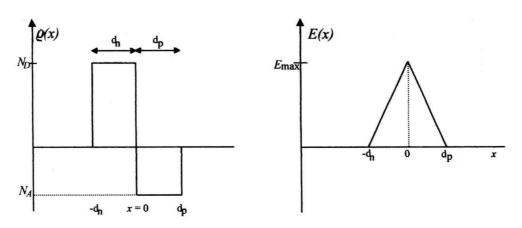
Übungen zur Festkörperphysik II WS 09/10

16 Dotierter Halbleiter

Untersucht wird der n-dotierte Halbleiter ZnO mit einer effektiven (isotrop angenommen) Elektronenmasse $m_L^* = 0.27$ m.


- a) Man misst bei T=4 K eine Elektronenkonzentration von $n=10^{20}$ cm⁻³. Wie groß ist das chemische Potential dieses entarteten Elektronengases bezogen auf die Leitungsbandunterkante ε_L ?
- b) Die Donatorkonzentration beträgt $N_D = 10^{19}~\rm cm^{-3}$ und die Donatorbindungsenergie beträgt $E_D = 0.1$ eV. Man gebe für die Temperatur $T{=}300~\rm K$ die Dichte n_L der Elektronen in dem nicht-entarteten Elektronengas an.
- c) Welcher Grenzfall, Störstellenreserve oder -erschöpfung, liegt bei dieser Temperatur vor?

17 pn-Übergang

Eine Silizium-Diode enthalte

- \bullet im p-Gebiet Boratome der Konzentration $N_A = 7 \times 10^{14} \text{ cm}^{-3}$
- \bullet im n-Gebiet Arsenatome der Konzentration $N_D = 1.75 \times 10^{14} \text{ cm}^{-3}$.

Die Bandlücke von Silizium beträgt 1.12 eV und die effektiven Massen $m_L^*=1.08$ m bzw. $m_V^*=0.59$ m. Die dielektrische Konstante kann mit $\epsilon=12$ angesetzt werden. Die Temperatur sei T=300 K. Der Verlauf der Raumladungsdichte und der elektrischen Feldstärke sind in der Skizze (Schottky-Modell) dargestellt.

- a) Berechnen Sie die Diffusionsspannung V_D des pn-Übergangs.
- b) Geben Sie die Ausdehnungen d_n und d_p der Raumladungszone an.
- c) Wie groß ist die elektrische Feldstärke am metallurgischen Übergang bei x = 0?

Abgabe: Mittwoch, den 02.12.2009 (vor der Vorlesung)