Klausur ExPhysik I - FSU Jena

WS 02/03 - 04.02.2003

Ohne Hilfsmittel

Aufgabe 1: Ermitteln Sie Amplitude und Phasenkonstante der ungedämpften harmonischen Bewegung eines Massenpunktes auf einer Geraden, wenn der Massenpunkt zur Zeit t=0 durch die Auslenkung vom Betrag x=6cm und die Geschwindigkeit v=37.3cm/s gekennzeichnet ist und seine Eigenfrequenz $\nu=1/s$ beträgt!

Aufgabe 2 Ein LKW fährt mit einer Geschwindigkeit v=60km/h. Seine Querschnittsfläche beträgt $A=3.75m^2$, die Widerstandszahl $c_w=0.6$, die Dichte der Luft $\rho_L=1.21Kg~m^{-3}$.

- a) Welche Leistung muß er aufbringen, um den Luftwiderstand zu kompensieren?
- b) Auf wieviel Prozent muß die Leistung steigen, wenn der LKW seine Geschwindigkeit auf 80km/h erhöhen will?

Aufgabe 3 Welchen Krümmungsradius muss eine Kurve haben, die ein Motorradfahrer mit einer Geschwindigkeit von 180Km/h durchfahren kann, wenn er sein Fahrzeug maximal um $\phi = 45^{\circ}$ gegen die Senkrechte neigt und ein Abgleiten auf der Fahrbahn ausgeschlossen sein soll?

Aufgabe 4 Eine Rakete wird senkrecht zur Erdoberfläche gestartet. Man begründe, in welche Himmelsrichtung die Corioliskraft wirkt (Nord- und Südhalbkugel)!

Aufgabe 5 Ein Fahrzeug, auf dem sich eine Schallquelle (Frequenz ν_0) und ein Empfänger befinden, und eine ebene, schallreflektierende Wand bewegen sich auf der Normalen der Reflektorebene (\vec{v}_1 : Geschwindigkeit des Fahrzeuges in Richtung Wand, Senderichtung, $v_1 = c/11$, c: Schallgeschwindigkeit in Luft; \vec{v}_2 Geschwindigkeit der Wand). Wie groß ist \vec{v}_2 , wenn die Frequenz der am Empfänger des Fahrzeuges detektierten, von der Wand reflektierten Welle

- a) $11/25 \nu_0$ höher
- b) $1/5 \nu_0$ höher
- c) gleich ν_0 ist?

Aufgabe 6 Durch einen Stahlstab ($E = 22 \cdot 10^{10} N \ m^{-2}$, $\rho = 8 \cdot 10^3 Kg \ m^{-3}$) läuft eine ebene harmonische Longitudinalwelle der Frequenz $\nu = 10kHz$, der Schwingungsamplitude $y_0 = 10^{-4} m$ und der Phasengeschwindigkeit $c^2 = E/\rho$.

- a) Wie groß sind die maximal auftretenden mechanischen Spannungen σ ?
- b) Mit welcher Geschwindigkeit bewegen sich die Schwingenden Teilchen?
- c) Welche Beziehung besteht zwischen ($\omega = 2\pi\nu$, $k = 2\pi/\lambda$) und der Phasengeschwindigkeit der Welle (Dispersion-srelation)?