Elektrodynamik FSU Jena - WS 2007/2008 - Notizen -

Stilianos Louca

16. Januar 2009

Inhaltsverzeichnis

1	Elel	ktrostat	ik	4
	1.1	Das Co	ulombsche Gesetz	4
		1.1.1	Kraftfeld einer Ladungsverteilung	4
		1.1.2	Elektrostatisches Feld einer Ladungsverteilung	4
		1.1.3	Das Gausssche Durchflutungsgesetz	4
		1.1.4	Übergangsbedingungen	5
		1.1.5	Das elektrostatische Potential	5
		1.1.6	Innere Energie einer Ladungsverteilung	5
		1.1.7	Wechselwirkungsenergie von Ladungsverteilungen	6
		1.1.8	Der Dipol	6
	1.2	Multip	olentwicklung	6
		1.2.1	Energieberechnung mittels Multipolentwicklung	7
		1.2.2	Kraftberechnung mittels Multipolentwicklung	7
		1.2.3	Drehmoment mittels Multipolentwicklung	7
		1.2.4	Folgerungen für Dipol	7
	1.3	Das Ra	ndwertproblem der Elektrostatik	8
		1.3.1	Formulierung des Problems	8
		1.3.2	1. Grundaufgabe: Das Dirichlet-Randwertproblem	8
		1.3.3	2. Grundaufgabe	9
		1.3.4	Energie und Kraft	0
		1.3.5	Greensche Funktion	0
		1.3.6	Kondensatoren	1
	1.4	Elektro	statik in Dielektrika	1
		1.4.1	Polarisation	1
		1.4.2	Dielektrische Verschiebung	2
		1.4.3	Materialgleichungen	2
		1.4.4	Übergangsbedingungen an Materialgrenzen	3
		1.4.5	Energie in dielektrischen Medien	3
		1.4.6	Kraftdichte in dielektrische Medien	4
	1.5	Potenti	alberechnung in Isolatoren	4
		1.5.1	Die Poissongleichung	4
		1.5.2	Methode der Greenschen Funktion	15
		1.5.3	Raumladungsfreie Probleme	15
•	ъл			c
2	Mag	gnetosta		.6
	2.1	Strom	& Magnetield	.0 .c
		2.1.1	Das Unmsche Gesetz	.0 .c
		2.1.2	Kontinuitatsgieicnung	.0 .c
		2.1.3	Ubergangsbedingungen an Grenzflachen	.0
		2.1.4	Das Magnetield stationarer Strome	.7

		2.1.5 Kraftwirkung des Magnetfelds	17
	2.2	Die Maxwellgleichungen in der Magnetostatik	17
		2.2.1 Differenzielle Formulierung	18
		2.2.2 Integrale Formulierung	18
	2.3	Das Vektorpotential	19
	2.0	2.3.1 Die Fichtransformation	10
		2.9.1 Die Elemenansion mation	10
	9.4	2.3.2 Destimining des Vektorpotentials	19
	2.4		19
		2.4.1 Aligemeine Definition der Multipolmomente	19
		2.4.2 Die wichtigsten Momente einer Stromverteilung	20
	2.5	Magnetostatik in Materie	20
		2.5.1 Die Magnetisierung \ldots	20
		2.5.2 Das H -Feld \ldots	21
		2.5.3 Materialgleichungen	21
		2.5.4 Übergangsbedingungen an Grenzflächen	22
		2.5.5 Raumladungsfreie Probleme	22
	2.6	Energie des magnetostatischen Feldes	22
		2.6.1 Allgemeine Formulierung	22
		2.6.2 Spezialfall: Dünne Leiter im Vakuum	23
	2.7	Kräfte im äußeren Magnetfeld	23
		2.7.1 Kleine Stromverteilungen	23
		2.7.2 Leiterschleife im äußeren Magnetfeld	24
		273 Der Maxwellsche Spannungstensor	$\frac{-}{24}$
3	Lan	gsam veränderliche Felder	25
		3.0.4 Erläuterung: langsam veränderliche Felder	25
	3.1	Das Induktionsgesetz	25
		3.1.1 Ruhende Systeme	25
		3.1.2 Bewegte Inertialsysteme	25
	3.2	Bestimmung der Felder	25
	0	3.2.1 Die Maxwellgleichungen bei langsam veränderlichen Feldern	$\frac{-0}{25}$
		3.2.2 Die Potentialgleichungen	-0 26
	22	Wechseletromtechnik	20 26
	0.0	2.2.1 Kirabhoffaaba Bagala	20 26
		2.2.2 Additionatheoreme für Widerstände und Kenezitäten	$\frac{20}{97}$
		3.3.2 Additionstileoreme full widerstande und Kapazitäten	21 07
		2.2.4 Leistung und Energie im Chambrie	21 00
		3.3.4 Leistung und Energie im Stromkreis	28
4	Das	vollständige System der Maxwellgleichungen	29
	4.1	Das System der Maxwellgleichungen	29
		4.1.1 Die Maxwellgleichungen im Vakuum	29
		4.1.2 Die Maxwellgleichungen in Medien	29
		413 Ströme und Kontinuitätsgleichungen	$\frac{-0}{29}$
	42	Zeitabhängige Felder	30
	1.4	4.2.1 Die Response-Funktion	30 30
		4.2.2 Übergeng in den Frequengreum	3U 30
		4.2.2 Obergang in den Frequenzraum	มบ 91
		4.2.5 Die Maxweigleichungen im Fourierraum	31 91
	4.0	4.2.4 Ubergangsbedingungen an Grenzen zweier Medien	31 01
	4.3	Die elektrodynamischen Potentiale	31
		4.3.1 Potentiale	31
		4.3.2 Eichtransformationen	31
	4.4	Die Wellengleichungen im Vakuum	32
		4.4.1 Homogene Wellengleichung	32
		4.4.2 Inhomogene Wellengleichung	32
	4.5	Energiesatz der Elektrodynamik	33
		4.5.1 Vakuum und lineare, isotrope, nicht dispersive Medien	33
		4.5.2 Dispersive & absorptive Medien - Monochromatische Felder	34
		4.5.3 Dispersive & absorptive Medien - Enge Spektren	35

	4.6	Der Impulssatz der Elektrodynamik	35
		4.6.1 Die Kraftdichte	35
		4.6.2 Der Maxwellsche Spannungstensor	35
		4.6.3 Impulsbilanz	36
5	Elel	ktromagnetische Wellen	37
	5.1	Vakuum	37
		5.1.1 Potentialgleichungen	37
		5.1.2 Feldgleichungen	38
	5.2	Transparente, homogene Medien	38
6	Her	leitung der wichtigsten Sätze	39
	6.1	Kontinuitätsgleichung	39
		6.1.1 Lokale Ladungserhaltung	39
		6.1.2 Globale Ladungserhaltung	39
	6.2	Energie beim Dirichlet Randwertproblem	39
		6.2.1 Bei vorgegebenen Potentialen auf Leitern	39
	6.3	Drehmoment im äußeren Magnetfeld	40
		6.3.1 Stromdurchflossene Leiterschleife	40
	6.4	Der Povntingsche Satz	40
		6.4.1 Vakuum	40
	6.5	Wellengleichung	41
	0.0	6.5.1 Homogen - Vakuum	41
		6.5.2 Inhomogen - Vakuum	42

1 Elektrostatik

1.1 Das Coulombsche Gesetz

1.1.1 Kraftfeld einer Ladungsverteilung

Auf eine Ladung q am Ort \vec{r} wirkt durch Ladungen $q_1, ..., q_n$ an den Orten $\vec{r}_1, ..., \vec{r}_n$ die elektrostatische Kraft

$$\vec{F}_q = \frac{q}{4\pi\varepsilon_0} \cdot \sum_{i=1}^n \frac{q_i}{\left|\vec{r} - \vec{r_i}\right|^2} \cdot \frac{\left(\vec{r} - \vec{r_i}\right)}{\left|\vec{r} - \vec{r_i}\right|}$$

bzw. für eine kontinuierliche Ladungsverteilung $\rho(\vec{r})$ im Volumen V

$$\vec{F}_q = \frac{q}{4\pi\varepsilon_0} \cdot \int_V \frac{\rho(\vec{r}\ ')}{\left|\vec{r} - \vec{r}_i\right|^2} \cdot \frac{(\vec{r} - \vec{r}_i)}{\left|\vec{r} - \vec{r}_i\right|} dV'$$

1.1.2 Elektrostatisches Feld einer Ladungsverteilung

Man definiert das elektrische Feld $\vec{E}(\vec{r})$ am Ort \vec{r} als den Quotienten

$$\vec{E}(\vec{r}) = \lim_{q \to 0} \frac{\vec{F}_q}{q}$$

Somit ist:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \cdot \sum_{i=1}^n \frac{q_i}{|\vec{r} - \vec{r_i}|^2} \cdot \frac{(\vec{r} - \vec{r_i})}{|\vec{r} - \vec{r_i}|} \cong \frac{1}{4\pi\varepsilon_0} \cdot \int_V \frac{\rho(\vec{r}\ ')}{|\vec{r} - \vec{r_i}|^2} \cdot \frac{(\vec{r} - \vec{r_i})}{|\vec{r} - \vec{r_i}|} dV'$$

1.1.3 Das Gausssche Durchflutungsgesetz

Aus oberer Definition folgt die 1. Maxwell Gleichung

$$\operatorname{div} \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0}$$

und ferner das Gauss
sche Durchflutungsgesetz für ein beliebiges, die Ladung Q um
schließendes Volumen V

$$\frac{Q}{\varepsilon_0} = \int_V \frac{\rho(\vec{r})}{\varepsilon_0} \, dV = \int_V \operatorname{div} \vec{E} \, dV = \int_{\partial V} \vec{E} \, d\vec{A}$$

Beispiel: Homogen geladene Kugelschale: Betrachten eine homogen geladene Kugelschale der Ladungsdichte ρ_0 und Radien $R_1 < R_2$. Aufgrund von Symmetriegründen ist das Feld im Außen- und Innenraum kugelsymmetrisch. Somit ist $\vec{E}(\vec{r}) = E(r)\vec{e}_{\rho}$ und ferner:

$$Q_r = \varepsilon_0 \cdot \int_{\partial V} \vec{E}(\vec{r}) \ d\vec{A} = \varepsilon_0 E(r) \cdot \int_{\partial V} \vec{e_\rho} \ d\vec{A} = 4\pi r^2 \varepsilon_0 E(r) \ \rightarrow \ E(r) = \frac{Q_r}{4\pi \varepsilon_0 r^2}$$

wobei

$$Q_r = \int\limits_V \rho_0 \ dV$$

die von der gedachten Kugel mit dem Radius r umschlossene Ladung ist. Somit folgt:

$$\vec{E} = \begin{cases} \frac{\rho_0 \left(R_2^3 - R_1^3\right)}{3\varepsilon_0 r^2} & : r > R\\ \frac{\rho_0 \left(r^3 - R_1^3\right)}{3\varepsilon_0 r^2} & : r \in [R_1, R_2]\\ 0 & : r < R_1 \end{cases}$$

1.1.4 Übergangsbedingungen

Oberflächenladungsdichte $\eta(\vec{r})$ auf der Fläche A bewirkt Unstetigkeit der Normalkomponente:

$$E_2^n(\vec{r}) - E_1^n(\vec{r}) = \frac{\eta(\vec{r})}{\varepsilon_0}$$

Tangentialkomponente bleibt unverändert!

1.1.5 Das elektrostatische Potential

Es zeigt sich, dass rot $\vec{E}(\vec{r}) = 0$ ist. Somit existiert eine skalare Funktion $\Phi(\vec{r})$ so dass $\vec{E} = -\operatorname{grad} \Phi(\vec{r})$ ist. Dabei ist es bis auf eine additive Konstante Φ_0 festgelegt. Es folgt aus der 1. Maxwell Gleichung die Poisson-Gleichung für das elektrostatische Potential:

$$\Delta \Phi(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0}$$

Bei vorgegebenen \vec{E} -Feld berechnet sich Φ gemäß

$$\Phi(\vec{r}) = \Phi(\vec{r}_0) + \int_{x_0}^x E^x(\xi, y_0, z_0) \ d\xi + \int_{y_0}^y E^x(x, \xi, z_0) \ d\xi + \int_{z_0}^z E^x(x, y, \xi) \ d\xi$$

Aus einer Ladungsverteilung ρ in einem Volumen $V \subset \mathbb{R}^3$ ist das Potential $\Phi(\vec{r})$ gegeben durch

$$\Phi(\vec{r}) = \Phi_0 + \frac{1}{4\pi\varepsilon_0} \cdot \int\limits_V \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|} \ dV' \cong \Phi_0 + \frac{1}{4\pi\varepsilon_0} \cdot \sum_i \frac{q_i}{|\vec{r} - \vec{r_i}|}$$

Durch Gradientenbildung ergibt sich das \vec{E} -Feld.

1.1.6 Innere Energie einer Ladungsverteilung

Kontinuierliche Ladungsverteilung (ohne Punktladungen!):

$$W = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \int\limits_V \int\limits_V \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} \ dV \ dV'$$

Ladungen im Feld:

$$W = \frac{1}{2} \cdot \int_{V} \varphi(\vec{r}) \rho(\vec{r}) \ dV$$

Reines Feld (ohne Singularitäten!):

$$\sigma(\vec{r}) := \frac{\varepsilon_0}{2} E^2(\vec{r}) : \text{lokale Energiedichte} \quad , \quad W = \int\limits_V \frac{\varepsilon_0}{2} E^2(\vec{r}) \ dV$$

Diskrete Ladungsverteilung (innere Energie der Punktladungen nicht betrachtet!):

$$W = \frac{1}{2} \cdot \sum_{i \neq j} \frac{q_i q_j}{|\vec{r}_i - \vec{r}_j|}$$

1.1.7 Wechselwirkungsenergie von Ladungsverteilungen

Kontinuierliche Verteilung im äußeren Feld:

$$W = \int\limits_V \rho(\vec{r}) \ \varphi_a(\vec{r}) \ dV$$
 , φ_a : äußeres Feld

Wechselwirkungsenergie <u>zwischen</u> zwei Ladungsverteilungen ρ_l und ρ_a :

$$W = \frac{1}{4\pi\varepsilon_0} \cdot \int_{V_l} \int_{V_a} \frac{\rho_l(\vec{r})\rho_a(\vec{r}')}{|\vec{r} - \vec{r}'|} \ dV \ dV'$$

Wechselwirkungsenergie <u>zwischen</u> zwei Punktladungen q_1, q_2 :

$$W = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{\left|\vec{r_1} - \vec{r_2}\right|}$$

1.1.8 Der Dipol

Dipol
moment zweier Ladungen q, -qim Abstand
 \vec{a} : definiert als $\vec{p} = q\vec{a}$. Übergang zum Punkt
dipol am Ort \vec{r}_d : $a \to 0, \ q \to \infty$ so das
sp konstant bleibt, ergibt Potential:

$$\Phi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{\vec{p} \cdot (\vec{r} - \vec{r_d})}{\left|\vec{r} - \vec{r_d}\right|^3} = -\frac{\vec{p}}{4\pi\varepsilon_0} \cdot \operatorname{grad}_{\vec{r}} \frac{1}{\left|\vec{r} - \vec{r_d}\right|}$$

Also für Punktdipol im Ursprung:

$$\Phi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{p\cos\vartheta}{r^2}$$

Somit elektrostatische Feld des Punktdipols:

$$\vec{E}(\vec{r}) = -\frac{1}{4\pi\varepsilon_0} \left(\vec{p} \cdot \text{grad} \right) \frac{\vec{r}}{r^3} = \frac{1}{4\pi\varepsilon_0} \left[\frac{3\left(\vec{r} \cdot \vec{p} \right) \vec{r}}{r^5} - \frac{\vec{P}}{r^3} \right]$$

Ladungsdichte eines Punktdipols:

$$\rho(\vec{r}) = -\vec{p} \cdot \operatorname{grad}_{\vec{r}} \delta(\vec{r})$$

1.2 Multipolentwicklung

Mit dem Multipolmoment

$$Q_{k_1\dots k_n}^n = 4\pi\varepsilon_0(-1)^n \cdot \int\limits_V \rho(\vec{r}') \ {r'}^{2n+1} \frac{\partial^n G_0(\vec{r}')}{\partial x_{k_1}\partial x_{k_2}\dots\partial x_{k_n}} \ dV$$

einer Ladungserteilung $\rho(\vec{r})$ als Tensor *n*-ter Stufe, erhält man das Elektrostatische Potential $\Phi(\vec{r})$ als

$$\Phi(\vec{r}) = \sum_{n=0}^{\infty} \varphi_n(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \cdot \sum_{n=0}^{\infty} \frac{Q^n(\vec{r}, ..., \vec{r})}{n! r^{2n+1}} = \frac{1}{4\pi\varepsilon_0} \cdot \sum_{n=0}^{\infty} \frac{Q_{k_1...k_n}^n}{n! r^{2n+1}} x_{k_1} \cdots x_{k_n}$$

Interpretation:

a) Moment 0. Stufe: Ladung:

$$Q^0 = \int\limits_V \rho(\vec{r}') \ dV'$$

Für hinreichende große Entfernung also

$$\Phi^0(\vec{r}) \to \frac{Q}{4\pi\varepsilon_0 r}$$

b) Moment 1. Stufe: Dipolmoment

$$Q_i^1 =: P_i = \int_V \rho(\vec{r}') x'_i \, dV' \sim \vec{P} = \int_V \rho(\vec{r}') \vec{r}' \, dV'$$

Dipolpotential:

$$\Phi^1(\vec{r}) \to \frac{P \cdot \vec{r}}{4\pi\varepsilon_0 r^3}$$

c) Moment 2. Stufe: Quadrupolmoment

$$Q_{ij}^{2} =: D_{ij} = \int_{V} \rho(\vec{r}\,') \left(3x_{i}'x_{j}' - {r'}^{2}\delta_{ij} \right) \, dV' \sim \hat{D} = \int_{V} dV \rho(\vec{r}) \left(\begin{array}{ccc} 3x^{2} - r^{2} & 3xy & 3xz \\ 3yx & 3y^{2} - r^{2} & 3yz \\ 3zx & 3zy & 3z^{2} - r^{2} \end{array} \right)$$

Aus Definition folgt: \hat{D} symmetrischer Tensor. Quadrupolpotential:

$$\Phi^2(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{D}(\vec{r},\vec{r})}{2r^5} = \frac{1}{4\pi\varepsilon_0} \frac{D_{ij}x_ix_j}{2r^5}$$

Für hinreichend große Entfernungen von der Ladungsverteilungen:

$$\varphi(\vec{r}) \approx \Phi^0(\vec{r}) + \Phi^1(\vec{r}) + \Phi^2(\vec{r})$$

Zylindersymmetrische Ladungsverteilungen besitzen nur ein Dipolmoment in Richtung der Symmetrieachse. Kugelsymmetrische Ladungsverteilungen besitzen kein Dipolmoment, und auch keine Momente höherer Ordnung!

1.2.1 Energieberechnung mittels Multipolentwicklung

Eng begrenzte Ladungsverteilung ρ im äußeren Feld φ_a , \vec{E}_a :

$$W = Q\varphi_a(\vec{r}) - \vec{P} \cdot \vec{E}_a(\vec{r}) - \frac{1}{6}D_{ij}\frac{\partial E_i}{\partial x_j}(\vec{r}) + \dots$$

1.2.2 Kraftberechnung mittels Multipolentwicklung

Eng begrenzte Ladungsverteilung ρ im äußeren Feld \vec{E}_a :

$$\vec{F}(\vec{r}) = Q\vec{E}_a(\vec{r}) + \left[\vec{P} \cdot \text{grad}\right]\vec{E}_a(\vec{r}) + \dots$$

1.2.3 Drehmoment mittels Multipolentwicklung

Eng begrenzte Ladungsverteilung ρ im äußeren Feld \vec{E}_a :

$$\vec{F}(\vec{r}) = \vec{P} \times \vec{E}_a(\vec{r}) + \dots$$

1.2.4 Folgerungen für Dipol

Energie eines Dipols \vec{P} im äußeren Feld

 $W = -\vec{p} \cdot \vec{E}_a(\vec{r})$ Minimal falls $\vec{p} \parallel \vec{E}$. Kraft auf Dipol: $\vec{F} = [\vec{p} \cdot \text{grad}] \vec{E}_a(\vec{r})$

Drehmoment im äußeren Feld:

Energie eines induzierten Dipols:

 $\vec{p} \times \vec{E}_a(\vec{r})$

 $W = -\frac{1}{2} \left(\vec{p} \cdot \vec{E} \right)$

1.3 Das Randwertproblem der Elektrostatik

1.3.1 Formulierung des Problems

Betrachten N ideale Leiter L_i und externe Ladungsverteilung $\rho(\vec{r})$. Zu berechnen: Potential $\Phi(\vec{r})$. Wissen:

- Φ konstant bzw. $\vec{E} = 0$ innerhalb der Leiter.
- Leiteroberflächen sind Äquipotentialflächen.
- Feldlinien stehen senkrecht auf Leiteroberfläche.
- Ladungen befinden sich alle auf der Oberfläche des Leiters, somit Oberflächenladungsdichte $\eta.$
- Aus

$$\left(\vec{n}\cdot\vec{E}\right) = \frac{\eta(\vec{r})}{\varepsilon_0}$$

folgt für das Potential an der Oberfläche des Leiters

$$\eta(\vec{r}) = -\varepsilon_0 \frac{\partial \Phi_a(\vec{r})}{\partial n} \mid_{\partial L_i}$$

• Außerhalb der Leiter gilt die Poissongleichung:

$$\Delta \Phi(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0}$$

1.3.2 1. Grundaufgabe: Das Dirichlet-Randwertproblem

Gegeben:

- a) Leiter L_i und Potentiale U_i auf Leitern.
- b) Externe Ladungsverteilung $\rho(\vec{r})$ außerhalb der Leiter.

Suchen:

- a) Potential $\Phi(\vec{r})$
- b) Oberflächenladungsdichte $\eta(\vec{r})$ auf den Leiteroberflächen.
- c) Gesamtladung Q_i auf den Leitern.

Lösungsweg:

a) Berechnung der Greenschen Funktion $G(\vec{r}, \vec{r}')$ für den Außenraum V. Dabei ist Greensche Funktion so dass:

$$-\varepsilon_0 \Delta G(\vec{r}, \vec{r}') = \delta(\vec{r} - \vec{r}')$$

$$\vec{r} \in \partial L_i \rightarrow G(\vec{r}, \vec{r}') = 0$$

b) Berechnung des Potentials nach:

$$\begin{split} \Phi(\vec{r}) &= \int_{V} G(\vec{r}, \vec{r}\ ') \Delta \Phi(\vec{r}\ ')\ dV' - \varepsilon_{0} \int_{\partial V} \Phi(\vec{r}\ ') \frac{\partial G(\vec{r}, \vec{r}\ ')}{\partial n'}\ dA' \\ &= \int_{V} G(\vec{r}, \vec{r}\ ') \rho(\vec{r}\ ')\ dV' + \sum_{i} U_{i} \cdot \int_{\partial L_{i}} (-\varepsilon_{0}) \frac{\partial G(\vec{r}, \vec{r}\ ')}{\partial n'}\ dA' \\ &= \Phi_{\rho}(\vec{r}) + \sum_{i} U_{i} \cdot \Gamma_{i}(\vec{r}) \end{split}$$

mit den allein von der Geometrie des Systems abhängigen Geometriefaktoren $\Gamma_i(\vec{r})$. Es gilt: $\Gamma_i(\partial L_i) = 1$ und $\Delta \Gamma(\vec{r}) = 0$. Bemerke:

- Normalableitung $\frac{\partial}{\partial n'}$ in den Leiter hine
in gerichtet!
- Potential $\Phi(\vec{r})$ setzt sich zusammen aus externen Potential $\Phi_{\rho}(\vec{r})$ und den durch die Potentiale der Leiter erzeugten Potentialen.
- Beitrag der induzierten Ladungen steckt schon in $\Phi_{\rho}(\vec{r})$
- c) Berechnung der Oberflächenladungsdichte $\eta_i(\vec{r})$ gemäß

$$\eta_i(\vec{r}) = -\varepsilon_0 \frac{\partial \Phi(\vec{r})}{\partial n_i} \mid_{\partial L_i} = -\varepsilon_0 \int\limits_V \frac{\partial G(\vec{r}, \vec{r}')}{\partial n_i} \rho(\vec{r}') \, dV' + \sum_j U_j \cdot \varepsilon_0^2 \int\limits_{\partial L_j} \frac{\partial^2 G(\vec{r}, \vec{r}')}{\partial n_i \partial n'_j} \, dA'$$

Bemerke: Normalableitung $\frac{\partial}{\partial n_i}$ vom Leiter heraus gerichtet!

d) Berechnung der Ladungen Q_i auf den Leitern:

$$Q_i = \int\limits_{\partial L_i} \eta_i(\vec{r}) \ dA$$

1.3.3 2. Grundaufgabe

Bekannt:

a) Externe Ladungsverteilung $\rho_e(\vec{r})$.

b) Gesamtladungen
$$Q_i = \int_{L_i} \eta_i(\vec{r}) \, dA$$
 auf Leitern.

Verwenden:

- a) Greensche Funktion $G(\vec{r}, \vec{r}')$ der Anordnung.
- b) Geometriekoeffizienten

$$\Gamma_i(\vec{r}) = -\varepsilon_0 \int\limits_{\partial L_i} \frac{\partial G(\vec{r}, \vec{r}')}{\partial n'_i} \ dA$$

Gesucht

- a) Potential $\Phi(\vec{r})$ außerhalb der Leiter.
- b) Flächenladungsdichten $\eta_i(\vec{r})$
- c) Potentiale auf Leitern φ_i .

Lösung:

a) Berechnung des externen Potentials

$$\Phi_{\rho}(\vec{r}) = \int_{V} G(\vec{r},\vec{r}\;')\rho(\vec{r}\;')\;dV'$$

b) Berechnung der von der Raumladung induzierten Ladung

$$Q_j^{ind} = \int_{\partial L_j} \eta_j^{ind}(\vec{r}) \, dA = -\varepsilon_0 \int_{\partial L_j} \frac{\partial \Phi_\rho(\vec{r})}{\partial n_j} \, dA = -\varepsilon_0 \int_{\partial L_j} \int_V \frac{\partial G(\vec{r}, \vec{r}')}{\partial n_j} \rho(\vec{r}') \, dV' \, dA$$

c) Berechnung der Kapazitätskoeffizienten C_{ij} :

$$C_{ij} := -\varepsilon_0 \int\limits_{\partial L_j} \frac{\partial \Gamma_i(\vec{r})}{\partial n_j} \ dA = \varepsilon_0^2 \int\limits_{\partial L_j} \int\limits_{\partial L_i} \frac{\partial^2 G(\vec{r}, \vec{r}')}{\partial n_j \partial n'_i} \ dA' \ dA$$

(a): Aus dem Leiter heraus gerichtet

(b): In den Leiter hinein gerichtet

d) Wegen

$$Q_j = Q_j^{ind} + \sum_i U_i C_{ij}$$

folgt

$$U_i = \sum_j C_{ij}^{-1} \left(Q_j - Q_j^{ind} \right)$$

e) Da jetzt Potentiale U_i auf Leitern bekannt, hat man das Problem auf das Dirichlet Randwertproblem zurückgeführt. Somit kann man $\Phi(\vec{r})$ und $\eta_i(\vec{r})$ berechnen.

1.3.4 Energie und Kraft

Verwenden:

- Potential $\Phi(\rho)$ im Außenfeld.
- Kapazitätskoeffizienten C_{ij}

Vorgegeben:

a) Potentiale U_j auf den Leitern. Dann:

$$W = \frac{1}{2} \int_{V} \rho(\vec{r}) \Phi_{\rho}(\vec{r}) \, dV + \frac{1}{2} \sum_{i,j} C_{ij} U_{i} U_{j}$$

Beweis: Siehe 6.2.1.

b) Gesamtladungen Q_i . Dann:

$$W = \frac{1}{2} \int_{V} \rho(\vec{r}) \Phi(\vec{r}) + \frac{1}{2} \sum_{i,j} C_{ij}^{-1} Q_i Q_j$$

Kraft auf Ladungsverteilung ergibt sich als $\vec{F} = -\operatorname{grad} W$.

1.3.5 Greensche Funktion

Eigenschaften der Greenschen Funktion:

- Hat nur was mit der Geometrie zu tun!
- Symmetrie: $G(\vec{r}, \vec{r}') = G(\vec{r}', \vec{r})$
- $-\varepsilon_0 \Delta G(\vec{r}, \vec{r}') = \delta(\vec{r}, \vec{r}')$

•
$$G(\partial L_i, \vec{r}') = 0$$

Wichtige Greensche Funktionen:

• Halbebene x > 0

$$G(\vec{r}, \vec{r}\,') = \frac{1}{4\pi\varepsilon_0} \left[\frac{1}{|\vec{r} - \vec{r}\,'|} - \frac{1}{|\vec{r} - \tilde{\vec{r}}|} \right] , \quad \tilde{\vec{r}} = \begin{pmatrix} -x' \\ y' \\ z' \end{pmatrix}$$
$$\Gamma(\vec{r}) = \begin{cases} 1 & : x \ge 0 \\ -1 & : x < 0 \end{cases}$$
$$G(\vec{r}, \ \vec{r}\,') = \frac{1}{4\pi\varepsilon_0} \left[\frac{1}{|\vec{r} - \vec{r}\,'|} - \frac{R}{r'} \cdot \frac{1}{|\vec{r} - \frac{R^2}{r'^2}\vec{r}\,'|} \right]$$

Geometriekoeffizient:

• Kugel mit dem Radius R

Geometriekoeffizient:

$$\Gamma(\vec{r}) = \begin{cases} \frac{R}{r} & : r \ge R \\ 0 & : r < R \end{cases}$$

 $C = 4\pi\varepsilon_0 R$

Kapazitätskoeffizient:

1.3.6 Kondensatoren

Ladung Q, Spannung U, Kapazität C:

Wichtige Kapazitäten:

a) Plattenkondensator: Fläche A, Plattenabstand d.

$$C_P = \frac{A\varepsilon_0}{d}$$

Q = CU

b) Kugelkondensator: Innerer Radius a, äußerer Radius b.

$$C_K = \frac{4\pi\varepsilon_0 ab}{b-a}$$

1.4 Elektrostatik in Dielektrika

1.4.1 Polarisation

Betrachten ein Medium, das unter Einfluss eines äußeren Feldes Polarisiert werden kann. Somit entsteht eine Dipoldichte:

$$\vec{P}_d(\vec{r}) := \sum_i \vec{p}_i \cdot \delta(\vec{r} - \vec{r}_i)$$

Somit Dipolpotential:

$$\Phi_d(\vec{r}) = -\frac{1}{4\pi\varepsilon_0} \int\limits_V \vec{P}_d(\vec{r}') \cdot \operatorname{grad}_{\vec{r}} \frac{1}{\vec{r} - \vec{r}'} \ dV'$$

Führen ein: mittlere Dipoldichte:

$$\vec{P}(\vec{r}) := \frac{1}{\Delta V} \int_{\Delta V} \vec{P}_d(\vec{r} + \vec{r}') \ dV$$

eines minimalen Volumenelements ΔV am Ort \vec{r} und erhalten für das mittlere Dipol-Potential am Ort \vec{r} :

$$\langle \Phi_d(\vec{r}) \rangle = -\frac{1}{4\pi\varepsilon_0} \int\limits_V \vec{P}(\vec{r}\,') \cdot \operatorname{grad}_{\vec{r}} \frac{1}{|\vec{r} - \vec{r}\,'|} \, dV' = \frac{1}{4\pi\varepsilon_0} \int\limits_{\partial V} \frac{\vec{P}(\vec{r}) \cdot d\vec{A}\,'}{|\vec{r} - \vec{r}\,'|} - \frac{1}{4\pi\varepsilon_0} \int\limits_V \frac{\operatorname{div}_{\vec{r}\,'} \vec{P}(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \, dV'$$

Durch Identifizierung

$$\rho_p(\vec{r}) = -\operatorname{div} \vec{P} \quad , \quad \eta_p(\vec{r}) = \vec{P}(\vec{r}) \cdot \vec{n}$$

als Polarisationsladungen erhält man

$$\langle \varphi_d(\vec{r}) \rangle = \frac{1}{4\pi\varepsilon_0} \int\limits_{\partial V} \frac{\eta_p(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \, dA' + \frac{1}{4\pi\varepsilon_0} \int\limits_{V} \frac{\rho_p(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \, dV'$$

Bemerkungen:

- Polarisationsladungen sind die Senken des Polarisationsfeldes div $\vec{P}(\vec{r}) = -\rho_p(\vec{r})$
- Polarisationsladungen treten zusätzlich zu den externen oder freien Ladungen auf.
- Quellen des $\vec{E}\text{-}\mathrm{Feldes}$ sind alle Ladungen.

$$\varepsilon_0 \operatorname{div} \vec{E} = \rho_p + \rho_e$$

 $\operatorname{rot} \vec{E} = 0$

• Es gilt stets

so dass man immer noch schreiben kann

$$\vec{E} = -\operatorname{grad}\Phi$$

• Die Gesamte induzierte Ladung des Dielektrikums verschwindet:

$$Q_p = -\int_V \operatorname{div} \vec{P}(\vec{r}) \, dV + \int_{\partial V} \vec{P}(\vec{r}) \, d\vec{A} = -\int_{\partial V} \vec{P}(\vec{r}) \, d\vec{A} + \int_{\partial V} \vec{P}(\vec{r}) \, d\vec{A} = 0$$

1.4.2 Dielektrische Verschiebung

Wegen Polarisationsladungen gilt jetzt:

$$\operatorname{div} \vec{E} = \frac{\rho_p + \rho_e}{\varepsilon_0}$$

mit externer Ladungsdichte ρ_e und Polarisationsladungsdichte ρ_p . Führen neues Feld ein: die *dielektrische Verschiebung*:

$$\vec{D}(\vec{r}) = \varepsilon_0 \vec{E}(\vec{r}) + \vec{P}(\vec{r})$$

für die gilt:

$$\operatorname{div} \vec{D} = \varepsilon_0 \operatorname{div} \vec{E} + \operatorname{div} \vec{P} = \rho_p + \rho_e - \rho_p = \rho_e$$

1.4.3 Materialgleichungen

Allgemein Polarisation vom \vec{E} -Feld abhängig:

$$\vec{P} = \vec{P} \left(\vec{E} \right)$$

 $\vec{P}\sim\vec{E}$

Betrachten lineare, isotrope Medien:

und führen die elektrische Suszeptibilität
$$\chi$$
ein:

$$\vec{P}(\vec{r}) = \varepsilon_0 \chi(\vec{r}) \vec{E}(\vec{r})$$

Somit ergibt sich:

$$\vec{D}(\vec{r}) = \varepsilon_0 (1 + \chi(\vec{r})) \vec{E}(\vec{r}) = \varepsilon_0 \varepsilon(\vec{r}) \vec{E}(\vec{r})$$

mit der statischen Dielektrizitätskonstante (relative Permittivität)

$$\varepsilon(\vec{r}) := 1 + \chi(\vec{r})$$

Bemerke:

• Der Ausdruck

$$\vec{D} = \varepsilon_0 \varepsilon(\vec{r}) \vec{E}$$

gilt nur im statischen Fall, für lineare, isotrope Medien!

• $\varepsilon(\vec{r})$ ist eine das Material bzw. den Ort beschreibende skalare Funktion.

1.4.4 Übergangsbedingungen an Materialgrenzen

Unabhängig von der jeweiligen Materialgleichung gilt

$$\operatorname{div} \vec{D} = \rho_e \,\, \rightsquigarrow \,\, D_{n_a}(\vec{r}) - D_{n_i}(\vec{r}) = \eta_e(\vec{r})$$

$$\operatorname{rot} \vec{E} = 0 \iff E_{t_a}(\vec{r}) = E_{t_i}(\vec{r})$$

Für lineare, isotrope Medien insbesondere:

$$\varepsilon_0 \varepsilon_a E_{n_a}(\vec{r}) - \varepsilon_0 \varepsilon_i E_{n_i}(\vec{r}) = \eta_e(\vec{r})$$

$$\begin{split} &-\varepsilon_0\varepsilon_a\frac{\partial\Phi_a(\vec{r})}{\partial n} + \varepsilon_0\varepsilon_i\frac{\partial\Phi_i(\vec{r})}{\partial n} = \eta_e(\vec{r})\\ &\frac{D_{t_a}}{\varepsilon_a} = \frac{D_{t_i}}{\varepsilon_i} \end{split}$$

Bemerke:

- Potential Φ immer stetig!
- Tangentialkomponente des \vec{E} -Feldes stetig an Grenzflächen.
- Tangentialkomponente des $\vec{D}\text{-}\mathrm{Feldes}$ unstetig an Grenzflächen.
- Normalkomponente des \vec{D} -Feldes sind nur stetig wenn keine η_e vorhanden ist. Speziell für $\eta_e = 0$:

und für lineare, isotrope Medien:

$$\varepsilon_a E_{n_a}(\vec{r}) = \varepsilon_i E_{n_i}(\vec{r})$$
$$\varepsilon_a \frac{\partial \Phi_a(\vec{r})}{\partial n} = \varepsilon_i \frac{\partial \Phi_i(\vec{r})}{\partial n}$$

 $D_{n_a} = D_{n_i}$

1.4.5Energie in dielektrischen Medien

Bei gegebenem \vec{E} - und \vec{P} -Feld ist Gesamtenergie allgemein gegeben durch

$$W = W_{\rho} + W_{p} = \frac{1}{2} \left[\varepsilon_{0} \int_{\mathbb{R}^{3}} \vec{E}^{2}(\vec{r}) \, dV + \int_{\mathbb{R}^{3}} \vec{P}(\vec{r}) \cdot \vec{E}(\vec{r}) \, dV \right] = \frac{1}{2} \int_{\mathbb{R}^{3}} \vec{D}(\vec{r}) \cdot \vec{E}(\vec{r}) \, dV$$
$$W = \frac{1}{2} \int_{\mathbb{R}^{3}} \Phi(\vec{r}) \cdot \rho_{e}(\vec{r}) \, dV$$

bzw.

R³

wobei Φ sowohl von ρ_e als auch von ρ_p erzeugt wird!

Beachte: Enthält gesamte Energie, inklusive Energie um Dipole zu spannen und ins Feld zu bringen! In linearen, isotropen Medien gilt insbesondere:

$$W = \frac{\varepsilon_0}{2} \int\limits_{\mathbb{R}^3} \varepsilon(\vec{r}) \cdot \vec{E}^2 \ dV$$

1.4.6 Kraftdichte in dielektrische Medien

Betrachten nur lineare Response:

$$\vec{D}(\vec{r}) = \varepsilon_0 \varepsilon(\vec{r}) \vec{E}(\vec{r})$$

und allgemein ρ_e , ρ_p . **Annahmen:**

- Verschiebung & Deformation, aber keine Dilatation!
- Stetiges $\varepsilon(\vec{r})$

Kraftdichte ergibt sich als

$$\vec{f}(\vec{r}) = \rho_e \vec{E}(\vec{r}) - \frac{\varepsilon_0}{2} \vec{E}^2 \operatorname{grad} \varepsilon(\vec{r})$$

Bemerkungen:

- Im Falle von homogenen Medien ε : const ergibt sich die normale Coulomb-Kraft $\vec{f} = \rho_e \vec{E}$, d.h Polarisationsladungen spielen keine Rolle!
- Abgesehen von ρ_e , ist \vec{f} antiparallel zu grad ε . Starke Dielektrika verdrängen also schwache Dielektrika.

Für stückweise stetiges $\varepsilon(\vec{r})$ erhalten:

$$\vec{f}(\vec{r}) = \operatorname{div} \hat{T}(\vec{r}) = \frac{\partial T_{ij}}{\partial x_j} \cdot \vec{e_i}$$

mit dem Maxwellschen Spannungstensor

$$T_{ij} = E_i D_j - \frac{1}{2} \delta_{ij} E_k D_k$$

Also Kraft auf Volumen V:

$$\vec{F} = \int_{V} \vec{f}(\vec{r}) \ dV = \int_{V} \operatorname{div} \hat{T}(\vec{r}) \ dV = \int_{\partial V} \hat{T}(\vec{r}) \cdot d\vec{A}$$

Somit um Kraft auf Körper K im Vakuum zu berechnen, suchen beliebiges Volumen $V \supset K$ aus und verwenden obige Formel! Bemerke: Im linearen Fall ist \hat{T} symmetrisch.

1.5 Potentialberechnung in Isolatoren - Lineare, Isotrope Medien

1.5.1 Die Poissongleichung

Wegen rot $\vec{E} = 0$ führen auch hier ein: $\vec{E} = -\operatorname{grad} \Phi$ und verwenden

div
$$\vec{D}(\vec{r}) = \varepsilon_0 \operatorname{div} \left[\varepsilon(\vec{r}) \vec{E}(\vec{r}) \right] = \rho_e(\vec{r})$$

Inhomogene Medien:

$$\Delta \Phi(\vec{r}) + \frac{1}{\varepsilon(\vec{r})} \operatorname{grad} \varepsilon(\vec{r}) \cdot \operatorname{grad} \Phi(\vec{r}) = -\frac{\rho_e(\vec{r})}{\varepsilon_0 \varepsilon(\vec{r})}$$

Allgemein zu kompliziert!

Betrachten daher homogene Medien: ε : const, also

$$\varepsilon_0 \varepsilon \operatorname{div} \vec{E}(\vec{r}) = \rho_e(\vec{r}) \rightsquigarrow \Delta \Phi(\vec{r}) = -\frac{\rho_e(\vec{r})}{\varepsilon_0 \varepsilon} \rightsquigarrow \Phi(\vec{r}) = \frac{1}{4\pi\varepsilon_0\varepsilon} \int\limits_V \frac{\rho(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|} \, dV'$$

Lösung mit bekannten Methoden, nur $\varepsilon_0 \to \varepsilon_0 \varepsilon$. Stückweise konstantes ε :

$$\Delta \Phi_i(\vec{r}) = -\frac{\rho_e^i(\vec{r})}{\varepsilon_0 \varepsilon_i}$$

Beachtung der Übergangsbedingungen an den Grenzflächen!

1.5.2 Methode der Greenschen Funktion

Problemstellung:

- N Dielektrika V_i mit den Dielektrizitätskonstanten ε_i .
- Externe Ladungsdichte ρ_e allgemein in jedem Dielektrikum.
- Natürliche Randbedingungen und Übergangsbedingungen.

Lösung:

a) Bestimmung der Greenschen Funktion $G(\vec{r}, \vec{r}')$ die in jedem Dielektrikum unterschiedlich ist:

$$G(\vec{r},\vec{r}') = G_i(\vec{r},\vec{r}') \text{ für } \vec{r} \in V_i \text{, so dass } -\varepsilon_0 \varepsilon_i \Delta G_i(\vec{r},\vec{r}') = \delta(\vec{r}-\vec{r}')$$

mit den Übergangsbedingungen an Grenzflächen:

• $G(\cdot, \vec{r}')$ ist stetig.

•
$$\varepsilon_i \frac{\partial G_i}{\partial n}$$
 ist stetig, d.h

$$\varepsilon_1 \frac{\partial G_1(\vec{r}, \vec{r}')}{\partial n} = \varepsilon_2 \frac{\partial G_2(\vec{r}, \vec{r}')}{\partial n} \mid_{\vec{r} \in \partial V_1 \cap \partial V_2}$$

b) Integrierung

$$\Phi(\vec{r}) = \int_{V} dV' \rho_{e}(\vec{r}') G_{i}(\vec{r},\vec{r}') \ dV': \vec{r} \in V_{i}$$

1.5.3 Raumladungsfreie Probleme

Für $\rho_e = 0$ und gegebener Polarisation $\vec{P}(\vec{r})$ ist Potential $\Phi(\vec{r})$ gegeben durch:

$$\Phi(\vec{r}) = -\frac{1}{4\pi\varepsilon_0} \cdot \int\limits_V \frac{\operatorname{div}\vec{P}(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \, dV' + \frac{1}{4\pi\varepsilon_0} \int\limits_{\partial V} \frac{\vec{P}(\vec{r}\,') \cdot d\vec{A}}{|\vec{r} - \vec{r}\,'|}$$

Daraus \vec{E} - und $\vec{D}(\vec{r})$ Feld:

$$\vec{E}(\vec{r}) = -\operatorname{grad}\Phi(\vec{r}) \ , \ \vec{D}(\vec{r}) = \varepsilon_0 \vec{E}(\vec{r}) + \vec{P}(\vec{r})$$

Beachte: Polarisation nicht vom \vec{E} -Feld hervorgerufen!

2 Magnetostatik

Statische Magnetische und Elektrische Felder.

2.1 Strom & Magnetfeld

2.1.1 Das Ohmsche Gesetz

Betrachten Ladungsträger der Ladung q, Teilchendichte N und Masse m in einem Medium die der Bewegungsgleichung

$$m\left(\ddot{\vec{r}} + \gamma \dot{\vec{r}}\right) = q\vec{E}(\vec{r})$$

genügen. Diese Ladungsbewegung entspricht einem elektrischen (konduktions-) Strom

$$\vec{j} = \underbrace{\frac{Nq^2}{m\gamma}}_{\sigma} \cdot \vec{E}$$

Oberer Zusammenhang ist das Ohmsche Gesetz mit σ als Leitfähigkeit. Man definiert ferner den Strom I durch eine Fläche

$$I = \int\limits_{A} \vec{j}(\vec{r}) \ d\vec{A}$$

Für dünne Leiter (homogene Stromverteilung) der Fläche A, Länge l und angesetzter Spannungsdifferenz V folgt für den den Querschnitt durchfließenden Strom

$$I = \frac{V}{R}$$
, $R = \frac{l}{\sigma A}$

2.1.2 Kontinuitätsgleichung

Für beliebige Ladungsverteilungen $\rho(\vec{r}, t)$ und Ströme $\vec{j}(\vec{r})$ gilt die Kontinuitätsgleichung (lokale Ladungserhaltung)

$$\operatorname{div} \vec{j}(\vec{r},t) + \frac{\partial \rho(\vec{r},t)}{\partial t} = 0$$

In der Statik ist somit

 $\operatorname{div} \vec{j} = 0$

Dieser Zusammenhang gilt für alle Ströme und Ladungen:

$$\rho \leftrightarrow \vec{j} \ , \ \rho_e \leftrightarrow \vec{j}_e \ , \ \rho_p \leftrightarrow \vec{j}_p$$

Bemerke: Für lineare, isotrope Medien, folgt für den statischen Fall mit σ, ε : const:

$$\operatorname{div} \vec{j} = 0 \ \rightarrow \ \rho_e = 0$$

2.1.3 Übergangsbedingungen an Grenzflächen

Betrachten den Strom \vec{j} durch eine Grenzfläche zwischen zwei Medien ε_1, σ_1 und ε_2, σ_2 . Im statischen Fall ist div $\vec{j} = 0$, was die Stetigkeit der Normalenkomponente des Stromes j_n impliziert! Wegen $D_{n_2} - D_{n_1} = \eta_e$ erhält man ferner

$$\left(\frac{\varepsilon_2}{\sigma_2} - \frac{\varepsilon_1}{\sigma_1}\right) j_n = \frac{\eta_e}{\varepsilon_0}$$

2.1.4 Das Magnetfeld stationärer Ströme

Führen die magnetische Induktion \vec{B} ein, dass durch stationäre Ströme erzeugt wird, gemäß:

$$d\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \cdot \frac{\vec{j}(\vec{s}) \times (\vec{r} - \vec{s})}{|\vec{r} - \vec{s}|^3} dV \cong \frac{\mu_0}{4\pi} \cdot I \cdot \frac{d\vec{s} \times (\vec{r} - \vec{s})}{|\vec{r} - \vec{s}|^3}$$

Obere Formulierung wird das Biot-Savartsche Gesetz genannt.

2.1.5 Kraftwirkung des Magnetfelds

Die Kraftdichte die auf eine (bewegte) Ladungsverteilung vom Magnetfeld ausgeübt wird, ist gegeben durch

 $\vec{f}(\vec{r}) = \vec{j}(\vec{r}) \times \vec{B}(\vec{r})$: Lorentzkraft

Somit ergibt sich die Kraft zwischen zwei stromdurchflossene, dünne Leiterschleifen S_1, S_2 als

$$\vec{F}_1 = \int_{S_1} I_1 \cdot d\vec{s}_1 \times \vec{B}_2(\vec{s}_1) \ d\vec{s}_1 = \frac{\mu_0 I_1 I_2}{4\pi} \cdot \int_{S_1} \int_{S_2} \frac{d\vec{s}_1 \times [d\vec{s}_2 \times (\vec{s}_1 - \vec{s}_2)]}{|\vec{s}_1 - \vec{s}_2|^3}$$

Bemerke: Die Lorenzkraft wirkt immer senkrecht zur Stromrichtung und errichtet daher keine Arbeit!

Beispiel: Zwei parallele, unendlich lange Leiter im Abstand *a* in Richtung der *z*-Achse, jeweils an den Stellen $(x_1, y_1) = (0, 0)$ und $(x_2, y_2) = (a, 0)$.

Wollen die Kraft ausrechnen, die zwischen zwei gegenüberliegenden Leiterelementen der Länge l wirkt:

$$\vec{F}_{2} = \frac{\mu_{0}I_{1}I_{2}}{4\pi} \cdot \int_{0}^{l} \int_{0}^{l} \frac{\vec{e}_{z} \times [\vec{e}_{z} \times ((s_{2} - s_{1})\vec{e}_{z} + a\vec{e}_{x})]}{[(s_{2} - s_{1})^{2} + a^{2}]^{\frac{3}{2}}} \, ds_{1} \, ds_{2}$$
$$= -\frac{a\mu_{0}I_{1}I_{2}}{4\pi} \cdot \underbrace{\int_{0}^{l} \int_{0}^{l} \frac{ds_{1}ds_{2}}{[(s_{2} - s_{1})^{2} + a^{2}]^{\frac{3}{2}}}}_{\geq 0} \cdot \vec{e}_{x}$$

Aus oberem Integral ist ersichtlich:

- Sind die Ströme gleichgerichtet, so ziehen sich die Drähte an.
- Sind die Ströme entgegengerichtet, so stoßen sich die Drähte ab.
- Die Kraft wirkt senkrecht auf die Drähte.

2.2 Die Maxwellgleichungen in der Magnetostatik

Voraussetzungen:

- $\dot{\rho} = \dot{\vec{j}} = 0$
- $\dot{\vec{E}} = \dot{\vec{B}} = 0$

2.2.1 Differenzielle Formulierung

Wegen

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \operatorname{rot}_{\vec{r}} \int_V \frac{\vec{j}(\vec{r}\;')}{|\vec{r} - \vec{r}\;'|} \; dV'$$

ist ersichtlich dass \vec{B} ein Wirbelfeld ist. Som
it ist

$$\operatorname{div} \vec{B}(\vec{r}) = 0$$

Ferner gilt das Amperésche oder Oerstedtsche Gesetz:

$$\operatorname{rot} \vec{B}(\vec{r}) = \mu_0 \vec{j}(\vec{r})$$

Bemerke:

- Das Magnetfeld (magnetische Induktion) ist für stationäre Ströme ein verwirbeltes, quellenfreies Feld.
- Für das elektrische Feld gilt stets:

$$\operatorname{rot} \vec{E}(\vec{r}) = 0 \ , \ \operatorname{div} \vec{E}(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0}$$

2.2.2 Integrale Formulierung

Für eine stromdurchflossene Fläche ${\mathcal A}$ gilt:

$$\int_{\partial \mathcal{A}} \vec{B}(\vec{r}) \, d\vec{s} = \mu_0 \int_{\mathcal{A}} \vec{j}(\vec{r}) \, d\vec{A} = \mu_0 I_{\mathcal{A}}$$

Für ein Volumen V ferner

$$\int_{V} \operatorname{div} \vec{B}(\vec{r}) \, dV = \int_{\partial V} \vec{B}(\vec{r}) \, d\vec{A} = 0$$

Tip: Erste Gleichung (Amperésches Gesetz) sehr nützlich für Probleme hoher Symmetrie, bei denen zum Beispiel $\vec{B} \cdot d\vec{s}$: const auf einer Strecke $\partial \mathcal{A}$ ist.

Beispiele:

• Magnetfeld eines unendlichen, stromdurchflossenen Zylinders (Radius R, Stromdichte im Inneren : $\vec{j} = j_0 \vec{e_z}$):

$$\vec{B}(\vec{r}) = \begin{cases} \mu_0 j_0 \frac{r}{2} \cdot \vec{e}_{\varphi} & : r < R \\ \\ \mu_0 \frac{I}{2\pi r} \cdot \vec{e}_{\varphi} & : r \ge R \end{cases}$$

• Magnetfeld einer stromdurchflossenen, langen Spule mit *n* Windungen, der Länge *l*. Die Symmetrieachse der Spule sei die *z*-Achse und die Windungsrichtung in diesem Kontext sei rechtshändig. Somit ist im Inneren

$$\vec{B}(\vec{r}) = \frac{\mu_0 nI}{l} \cdot \vec{e}_z$$

 $\vec{B}(\vec{r}) = 0$

und außerhalb für $l \to \infty$

2.3 Das Vektorpotential

Wegen div $\vec{B} = 0$ führen das Vektorpotential \vec{A} ein:

 $\vec{B}(\vec{r}) = \operatorname{rot} \vec{A}$

Bemerke: \vec{A} bis auf ein Gradientenfeld eindeutig bestimmt!

2.3.1 Die Eichtransformation

Grundgleichung für \vec{A} :

rot rot
$$\vec{A}(\vec{r}) = \text{grad} \operatorname{div} \vec{A}(\vec{r}) - \Delta \vec{A}(\vec{r}) = \mu_0 \vec{j}(\vec{r})$$

Doch Wahlfreiheit

 $\vec{A}' := \vec{A} + \operatorname{grad} \varphi$

lässt $\vec{B} = \operatorname{rot} \vec{A} = \operatorname{rot} \vec{A}'$ unverändert! Also suchen ein \vec{A}' so dass:

$$\operatorname{div} \overline{A}' = 0 \rightarrow \operatorname{div} \overline{A} + \Delta \varphi = 0$$
: Coulomb Eichung

Für ein gegebenes \vec{A} ist diese Poissongleichung für $\varphi(\vec{r})$ lösbar, so dass es solch ein $\vec{A'}$ geben kann. Bekommen also:

$$\Delta \vec{A}(\vec{r}) = -\mu_0 \vec{j}(\vec{r})$$

wobei wir wieder zurücknennen $\vec{A'} \to \vec{A}$. Obere stellt eine Poissongleichung für jede Komponente dar.

2.3.2 Bestimmung des Vektorpotentials

Natürliche Randbedingungen: Wie in Elektrostatik \rightarrow Greensche Funktion

$$-\mu_0 \Delta G(\vec{r}, \vec{r}') = \delta(\vec{r} - \vec{r}') \iff G(\vec{r}, \vec{r}') = \frac{\mu_0}{4\pi} \cdot \frac{1}{|\vec{r} - \vec{r}|}$$

Somit Lösung gleich aufschreiben als

$$\vec{A}(\vec{r}) = \int_{\mathbb{R}^3} G(\vec{r}, \vec{r}') \cdot \vec{j}(\vec{r}') \ dV' = \frac{\mu_0}{4\pi} \cdot \int_{\mathbb{R}^3} \frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|} \ dV'$$

Lösung erfüllt automatisch Eichtransformation:

 $\operatorname{div} \vec{A} = 0$

für endliche Stromverteilungen!

2.4 Multipolentwicklung des Vektorpotentials in der Magnetostatik

2.4.1 Allgemeine Definition der Multipolmomente

Analog zur Elektrostatik, führen auch hier für endliche Stromverteilungen die Multipolmomente

$${}_{n}J^{i}_{k_{1}...k_{n}} := \frac{4\pi}{\mu_{0}}(-1)^{n}\int_{V} j_{i}(\vec{r}'){r'}^{2n+1}\frac{\partial^{n}G_{0}(\vec{r}')}{\partial x_{k_{1}}...\partial x_{k_{n}}} dV'$$

als Tensoren *n*-ter Stufe ein. Der Index "i" deutet auf die Komponente von \vec{j} an! Somit ist \vec{A} entwickelbar gemäß

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \cdot \sum_{n=0}^{\infty} \frac{n J_{k_1,\dots,k_n}^i}{n! r^{2n+1}} \cdot x_{k_1} \cdot \dots \cdot x_{k_n} \cdot \vec{e_i}$$

2.4.2 Die wichtigsten Momente einer Stromverteilung

a) Monopolpotential:

$$\vec{A}_m(\vec{r}) = \frac{\mu_0}{4\pi} \frac{1}{r} \cdot \int\limits_V \vec{j}(\vec{r}') \ dV'$$

Doch wegen div $\vec{j} = 0$ ist $j_i = \operatorname{div}(x_i \cdot \vec{j})$ und somit

$$A_{m}^{i} = \frac{\mu_{0}}{4\pi} \frac{1}{r} \cdot \int_{V} \operatorname{div} \left[x_{i} \vec{j}(\vec{r}') \right] \, dV' = \frac{\mu_{0}}{4\pi} \frac{1}{r} \cdot \int_{\partial V} x_{i} \vec{j}(\vec{r}') \, d\vec{A}' = 0$$

da \vec{j} am Rand ∂V verschwindet. Es existieren also keine magnetischen Monopole!

b) Dipolpotential:

$$\vec{A}_{d}(\vec{r}) = \frac{\mu_{0}}{4\pi} \frac{1}{r^{3}} \int_{V} \vec{j}(\vec{r}') \cdot (\vec{r} \cdot \vec{r}') \ dV' = -\frac{\mu_{0}}{4\pi} \frac{\vec{r}}{r^{3}} \times \frac{1}{2} \int_{V} \left[\vec{r}' \times \vec{j}(\vec{r}') \right] \ dV'$$

Führen som
it magnetisches Dipolmoment \vec{m} ein

$$\vec{m} := \frac{\mu_0}{2} \int\limits_V \left[\vec{r}~' \times \vec{j}(\vec{r}~') \right] ~dV'$$

und erhalten für das Dipolpotential

$$\boxed{\vec{A}_d(\vec{r}) = \frac{1}{4\pi} \cdot \frac{\vec{m} \times \vec{r}}{r^3}}$$

Das Dipolfeld ergibt sich so als

$$\vec{B}_d(\vec{r}) = \operatorname{rot} \vec{A}_d(\vec{r}) = \frac{1}{4\pi} \cdot \frac{3\vec{r} \cdot (\vec{r} \cdot \vec{m}) - r^2 \vec{m}}{r^5} + \frac{2}{3} \cdot \vec{\mu} \,\,\delta(\vec{r})$$

Fazit: In einiger Entfernung von der Stromverteilung beschreibt das Dipolpotential das gesamte Potential ausreichend gut.

Beispiel: Kreisstrom in dünnen Drähten: Übergang $\vec{j}(\vec{r}')dV' \rightarrow Id\vec{s}'$. Dipolmoment einer beliebigen, in einer Ebene liegenden, stromdurchflossenen Schleife, gegeben durch

$$\vec{m} = \mu_0 I \vec{A}$$

wobei $\vec{A} = A\vec{n}$ der Flächennormalenvektor ist.

2.5 Magnetostatik in Materie

2.5.1 Die Magnetisierung

Analog zur Elektrostatik, auch hier mikroskopische magnetische Dipole (molekulare Ströme), mit dem Dipolfeld

$$\vec{A}(\vec{r}) = \frac{1}{4\pi} \cdot \frac{\vec{m} \times (\vec{r} - \vec{r}')}{\left|\vec{r} - \vec{r}'\right|^3}$$

Führen die Dipoldichte

$$\vec{M}_m(\vec{r}) = \sum_i \vec{m}^i \delta(\vec{r} - \vec{r}')$$

und die mittlere Dipoldichte (Magnetisierung)

$$\vec{M}(\vec{r}) = rac{1}{\Delta V} \int\limits_{\Delta V} \vec{M}_m(\vec{r} + \vec{r}') \ dV$$

ein, und erhalten so das mittlere Dipolpotential definiert als

$$\left\langle \vec{A}_m(\vec{r}) \right\rangle = \frac{1}{\Delta V} \int\limits_{\Delta V} \vec{A}_m(\vec{r} + \vec{r}') \ dV'$$

durch:

$$\left< \vec{A}_m(\vec{r}) \right> = \frac{1}{4\pi} \int_V \frac{\vec{M}(\vec{r}) \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|} \ dV'$$

Für die Magnetisierung folgt

$$rot \vec{M}(\vec{r}) = \mu_0 \vec{j}_m(\vec{r})$$

Die Wirbel des Magnetisierungsfeldes sind die molekularen Ströme.

2.5.2 Das \vec{H} -Feld

Führen das Hilfsfeld

$$\overrightarrow{\vec{H}(\vec{r})} := \frac{1}{\mu_0} \left[\vec{B}(\vec{r}) - \vec{M}(\vec{r}) \right]$$

ein für das gilt

$$\operatorname{rot} \vec{H} = \vec{j}_e \quad , \quad \operatorname{div} \vec{H} = -\frac{1}{\mu_0} \operatorname{div} \vec{M}(\vec{r})$$

wobei jetzt \vec{j}_e die externen Ströme seien. Dabei gilt:

- Die Wirbel des \vec{H} -Feldes sind die makroskopischen Ströme.
- Die Quellen des $\vec{H}\text{-}\mathrm{Feldes}$ sind die Senken des $\vec{M}\text{-}\mathrm{Feldes}.$
- Das \vec{B} -Feld ist stets quellenfrei.

2.5.3 Materialgleichungen

Allgemein nicht linearer Zusammenhang

$$\vec{M} = \vec{M} \left(\vec{B} \right)$$

Betrachten jedoch linearen Zusammenhang:

$$\vec{M}(\vec{r}) = \frac{\chi_m}{1 + \chi_m} \vec{B}(\vec{r}) \rightarrow \vec{H}(\vec{r}) = \frac{1}{\mu\mu_0} \vec{B}(\vec{r})$$

mit der magnetischen Suszeptibilität χ_m und der relativen (magnetischen) Permeabilität $\mu := 1 + \chi_m$. Somit folgt für konstantes μ die Poissongleichung

$$\Delta \vec{A}(\vec{r}) = -\mu \mu_0 \vec{j}_e(\vec{r})$$

Somit alle bekannten Lösungswege anwendbar: $\mu_0 \rightarrow \mu \mu_0$:

$$\vec{A}(\vec{r}) = \frac{\mu\mu_0}{4\pi} \int_V \frac{\vec{j}_e(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|}$$

2.5.4 Übergangsbedingungen an Grenzflächen

Betrachten stückweise konstantes μ . Wegen div $\vec{B} = 0$ folgt

 $B_n(\vec{r})$ stetig

Wegen rot $\vec{H}(\vec{r}) = \vec{j}_e(\vec{r})$ folgt

Bemerke: Da Oberflächenströme meist 0 ist H^t meist auch stetig.

2.5.5 Raumladungsfreie Probleme

Betrachten vorgegebene Magnetisierung \vec{M} und \vec{j}_e . Dann ist

$$\operatorname{rot} \vec{H} = \vec{j}_e = 0 \ , \ \operatorname{div} \vec{H} = -\frac{\operatorname{div} \vec{M}}{\mu_0}$$

Führen deshalb skalares Potential φ_m ein:

$$\vec{H} = -\operatorname{grad} \varphi_m \rightarrow \Delta \varphi_m(\vec{r}) = \frac{\operatorname{div} \vec{M}(\vec{r})}{\mu_0}$$

Also analoge Lösungsmethoden zu Elektrostatik mit vorgegebener Raumladung: $\varepsilon_0 \to \mu_0$, $\rho(\vec{r}) \to -\operatorname{div} \vec{M}$. Somit für differenzierbare Magnetisierungen:

$$\varphi_m(\vec{r}) = -\frac{1}{4\pi\mu_0} \int\limits_V \frac{\operatorname{div}_{\vec{r}} \cdot \vec{M}(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \, dV' = -\frac{1}{4\pi\mu_0} \operatorname{grad}_{\vec{r}} \int\limits_V \frac{\vec{M}(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \, dV'$$

Bemerke: Für große Entfernungen ist $\frac{1}{|\vec{r} - \vec{r}'|} \approx \frac{1}{r}$ so dass sich ergibt

$$\varphi_m(\vec{r}) = -\frac{1}{4\pi\mu_0} \cdot \frac{\vec{m}\cdot\vec{r}}{r^3} , \ \vec{m} := \int_V \vec{M}(\vec{r}) \ dV'$$

was genau einem Dipolfeld entspricht!

Für nicht differenzierbare Magnetisierungen, z.B an Grenzflächen, in Analogie zur Elektrostatik in Dielektrika:

$$\varphi_m(\vec{r}) = -\frac{1}{4\pi\mu_0} \int\limits_V \frac{\operatorname{div}_{\vec{r}\ '} \dot{M}(\vec{r}\ ')}{|\vec{r} - \vec{r}\ '|} \ dV' + \frac{1}{4\pi\mu_0} \int\limits_{\partial V} \frac{\dot{M}(\vec{r}\ ') \cdot dA}{|\vec{r} - \vec{r}\ '|}$$

2.6 Energie des magnetostatischen Feldes oder einer stationären Stromverteilung

2.6.1 Allgemeine Formulierung

Annahme: Lineare Response:

$$\vec{H}(\vec{r}) = \frac{1}{\mu\mu_0}\vec{B}(\vec{r})$$

Feldenergie:

$$W = \frac{1}{2} \int\limits_{\mathbb{R}^3} \vec{B}(\vec{r}) \cdot \vec{H}(\vec{r}) \, dV$$

Energie in Strömen und Potential:

$$W = \frac{1}{2} \int\limits_{V} \vec{A}(\vec{r}) \cdot \vec{j}_{e}(\vec{r})$$

bzw.

$$W = \frac{\mu \mu_0}{8\pi} \int\limits_V \int\limits_V \frac{\vec{j}_e(\vec{r}\;')\vec{j}_e(\vec{r})}{|\vec{r} - \vec{r}\;'|} \; dV \; dV'$$

2.6.2 Spezialfall: Dünne Leiter im Vakuum

Betrachten n dünne Leiter S_i , durchflossen durch die Ströme I_i . Mit den Gegeninduktionskoeffizienten

$$L_{ij} := \frac{\mu_0}{4\pi} \int_{S_i} \int_{S_j} \frac{d\vec{s}_i d\vec{s}_j}{|\vec{s}_i - \vec{s}_j|} \ , \ i \neq j$$

 $und \ Selbstinduktionsko effizienten$

$$L_{ii} := \frac{\mu_0}{4\pi I^2} \int_{V_i} \int_{V_i} \frac{\vec{j}_i(\vec{r}) \vec{j}_i(\vec{r}')}{|\vec{r} - \vec{r}'|} \ dV' \ dV$$

ist die Energie gegeben durch

$$W = \frac{1}{2} \sum_{i,j} L_{ij} I_i I_j$$

Andere Darstellung: Mit dem magnetischen Fluss

$$\Phi_i = \int\limits_{F_i} \vec{B}(\vec{r}) \ d\vec{A} = \sum_j L_{ij} I_j$$

durch die *i*-te Schleife, ist

$$W = \frac{1}{2} \sum_i \Phi_i I_i$$

2.7 Kräfte im äußeren Magnetfeld

2.7.1 Kleine Stromverteilungen

Vorgegeben:

- Vakuum.
- Endliche Stromverteilung \vec{j} im Volumen V.
- Magnetfeld $\vec{B}_a(\vec{r})$ in V: etwa konstant im gesamten V, so dass Näherung gilt:

$$\vec{B}_a(\vec{r}+\vec{r}') \approx \vec{B}_a(\vec{r}) + (\vec{r}' \cdot \operatorname{grad}_{\vec{r}}) \vec{B}_a(\vec{r})$$

Kraftdichte:

$$\vec{f}(\vec{r}) = \vec{j}(\vec{r}) \times \vec{B}_a(\vec{r})$$

Mit dem magnetischen Moment

$$\vec{m}_r := \frac{\mu_0}{2} \int\limits_V \vec{r}\;' \times \vec{j} (\vec{r} + \vec{r}\;') \; dV'$$

ergibt sich die Gesamtkraft als:

$$\vec{F}(\vec{r}) \approx \frac{1}{\mu_0} \left(\vec{m}_r \cdot \operatorname{grad}_{\vec{r}} \right) \vec{B}_a(\vec{r}) = \frac{1}{\mu_0} \vec{B}'_a(\vec{r}) \cdot \vec{m}_r = \frac{1}{\mu_0} \operatorname{grad} \left[\vec{m}_r \cdot \vec{B}_a(\vec{r}) \right] \quad , \quad (*) : Ableitung$$

Wegen $\vec{F}(\vec{r}) = -\operatorname{grad} W$ ist die Energie gegeben durch

$$W \approx -\frac{1}{\mu_0} \vec{m}_r \cdot \vec{B}_a(\vec{r})$$

Außerdem Drehmoment:

$$\vec{M}_r \approx \frac{1}{\mu_0} \vec{m}_r \times \vec{B}_a(\vec{r})$$

Bemerkung: Ergebnisse entsprechen Energie, Kraft und Drehmoment auf einen magnetischen Dipol in einem magnetostatischen Feld.

2.7.2 Leiterschleife im äußeren Magnetfeld

Vorgegeben:

- a) Konstantes äußeres Magnetfeld \vec{B}
- b) Geschlossene Leiterschleife S, in der ein stationärer Strom I fließt.

Gesucht: Auf die Schleife wirkendes Drehmoment \vec{M} . Lösung 1: Mit dem magnetischen Dipolmoment

$$\vec{m} := \frac{\mu_0 I}{2} \int\limits_S \vec{s} \times d\bar{s}$$

 ist

$$\vec{M} = \frac{1}{\mu_0} \vec{m} \times \vec{B}$$

Lösung 2: Aus der Definition des Drehmoments und der Lorenzkraft folgt direkt

$$\vec{M} = I \cdot \int\limits_{S} \vec{s} \times \left(d\vec{s} \times \vec{B} \right)$$

Beide Methoden liefern das gleiche Ergebnis. Zum Beweis siehe 6.3.1.

2.7.3 Der Maxwellsche Spannungstensor - Magnetische Anteil

Vorgegeben:

- Magnetfeld \vec{B}
- Lineare Response: $\vec{B} = \mu(\vec{r})\mu_0\vec{H}$

Mit dem Maxwellschen Spannungstensor

$$T_{ij}^m = (B_i H_j) - \frac{\delta_{ij}}{2} \cdot \vec{B} \cdot \vec{H}$$

erhält man die Kraftdichte

$$\vec{f} = \frac{\partial T^m_{ij}}{\partial x_j} \cdot \vec{e_i} = \operatorname{div} \hat{T}^m$$

und somit die Gesamtkraft auf ein Volumen V

$$\vec{F}(\vec{r}) = \int_{\partial V} \hat{T}^m \cdot d\vec{A}$$

3 Langsam veränderliche Felder

3.0.4 Erläuterung: langsam veränderliche Felder

Betrachten als langsam veränderlich Felder für die gilt

$$\left|\frac{\partial}{\partial t}\vec{D}\right| << \left|\vec{j}\right|$$

Für harmonisch, mit der Kreisfrequen
z ω oszillierende Felder im Dielektrikum
 ε der Leitfähigkeit σ also

$$\frac{\omega\varepsilon_0\varepsilon}{\sigma} << 1$$

3.1 Das Induktionsgesetz

3.1.1 Ruhende Systeme

Beobachtung: Änderung des magnetischen Feldes verwirbelt elektrisches Feld \rightarrow induzierte Ströme:

$$\operatorname{rot} \vec{E}(\vec{r},t) = -\frac{\partial}{\partial t} \vec{B}(\vec{r},t)$$

Somit Faradaysches Induktionsgesetz:

$$\int_{\partial \mathcal{O}} \vec{E}(\vec{r},t) \ d\vec{\vec{r}} = -\frac{d}{dt} \int_{\mathcal{O}} \vec{B}(\vec{r},t) \ d\vec{A} = -\frac{\partial \Phi}{\partial t} \ , \Phi(t) := \int_{\mathcal{O}} \vec{B}(\vec{r},t) \ d\vec{A}$$

für eine beliebige Fläche $\mathcal{O}.$ Speziell für stromdurchflossene Leiterschleife

$$U_{ind} = -\frac{\partial \Phi}{\partial t}$$

Für N Leiterschleifen, mit Induktionskoeffizienten L_{ij} :

$$\Phi_i = \sum_j L_{ij} I_j \rightarrow U_i^{ind} = -\frac{d}{dt} \sum_j L_{ij} I_j$$

Bemerke: L_{ij} und I_j können beide Zeitabhängig sein!

3.1.2 Bewegte Inertialsysteme

Inertialsystem bewegt sich mit Relativgeschwindigkeit \vec{v} bzgl. der Felder. Dann ist im bewegten System

$$\operatorname{rot}\left[\vec{E} - \vec{v} \times \vec{B}(\vec{r}, t)\right] = -\frac{\partial}{\partial t}\vec{B}(\vec{r}, t)$$

Ist \vec{E}' das $\vec{E}\text{-}\mathrm{Feld}$ im ruhenden System , so ist

$$\vec{E}(\vec{r},t) = \vec{E}'(\vec{r},t) + \vec{v} \times \vec{B}(\vec{r},t)$$

3.2 Bestimmung der Felder

3.2.1 Die Maxwellgleichungen bei langsam veränderlichen Feldern

Allgemein in Medien:

$$\begin{aligned} &\operatorname{rot} \vec{E}(\vec{r},t) = -\frac{\partial}{\partial t} \vec{B}(\vec{r},t) & \operatorname{div} \vec{D}(\vec{r},t) = \rho_e(\vec{r},t) \\ &\operatorname{rot} \vec{H}(\vec{r},t) = \vec{j}_e(\vec{r},t) & \operatorname{div} \vec{B}(\vec{r},t) = 0 \end{aligned}$$

3.2.2 Die Potentialgleichungen

Führen auch hier Vektor
potential \vec{A} ein:

$$\vec{B}(\vec{r},t) = \operatorname{rot} \vec{A}(\vec{r},t)$$

so dass

$$\operatorname{rot} \vec{E} = -\frac{\partial}{\partial t} \operatorname{rot} \vec{A} \to \operatorname{rot} \left[\vec{E} + \frac{\partial A}{\partial t} \right] = 0$$

gilt, und man somit auch ein skalares Potential Φ einführen kann:

$$\vec{E} + \frac{\partial}{\partial t}\vec{A} = -\operatorname{grad}\Phi$$

Durch diese beiden Potentiale sind die homogenen Maxwellgleichungen automatisch gesichert! Man erhält durch direkte Manipulation die DGL

$$\Delta \Phi = -\frac{\rho}{\varepsilon_0} - \frac{\partial}{\partial t} \operatorname{div} \vec{A}$$

$$\Delta A = \operatorname{grad}\operatorname{div} A - \mu_0 \vec{j}$$

Durch die Transformation

$$\vec{A}' := \vec{A} + \operatorname{grad} \Psi$$
, $\Phi' = \Phi - \frac{\partial \Psi}{\partial t}$

ändert sich nichts für die Felder \vec{E} und \vec{B} , und es zeigt sich dass immer die so genannte Coulomb Eichung möglich ist:

div
$$\vec{A} \stackrel{!}{=} 0$$

Man erhält so unter oberer Eichung die Poissongleichungen

$$\Delta \Phi = -\frac{\rho}{\varepsilon_0} \quad , \quad \Delta \vec{A} = -\mu_0 \vec{j}$$

die identisch sind mit den Gleichungen der Statik. Die Potentiale und somit auch die Felder folgen also adiabatisch den Quellen und Wirbeln.

3.3 Wechselstromtechnik

3.3.1 Kirchhoffsche Regeln

Betrachten langsam veränderliche (niederfrequente) Ströme in Leitern L_i . **Knotenregel** Die Summe aller in und aus einem Leiter-Knoten fließenden Ströme ist 0:

$$\sum_{k} I_{k} = 0$$

Folgt aus Kontinuitätsgleichung.

Maschenregel: Die Summe aller in einem Leiterkreis abfallenden bzw. ansteigenden Spannungen U_k ist 0:

$$\sum_{k} U_{k} = 0$$

Bemerkung:

- Im Leiterkreis konsistent eine Zählrichtung anwenden und alles auf diese Richtung beziehen!
- Strom I fließt in Richtung Spannungsabfall!
- Spannungsanstieg am Widerstand: $U_R = -IR$

• Spannungsanstieg am Kondensator:
$$U_C = -\frac{Q}{C}$$

• Spannungsanstieg an Induktion: $U_i = -L\dot{I}$

Besser formuliert: In einem Leiterkreis S ist:

$$\int_{\partial S} \vec{E}(\vec{s}) \ d\vec{s} = U_{ind} = -\frac{d}{dt} \Phi = -\frac{d}{dt} \int_{S} \vec{B}(\vec{r}) \ d\vec{A} = -\frac{d}{dt} \sum_{i} L_{i} I_{i}$$

Betrachten dazu folgenden Stromkreis:

Bzgl. der illustrierten Umlaufrichtung ist:

$$\int_{U_e} \vec{E} d\vec{r} + \int_{R} \vec{E} d\vec{r} + \int_{C} \vec{E} d\vec{r} = -L \frac{dI}{dt} \rightarrow IR + \frac{Q}{C} + L \frac{dI}{dt} = U_e$$

wobei I der bzgl. dieser Richtung fließende Strom ist.

3.3.2 Additionstheoreme für Widerstände und Kapazitäten

Widerstände:

• Parallele Schaltung:

$$\frac{1}{R} = \sum_{i} \frac{1}{R_{i}}$$

Reihenschaltung:
$$R = \sum_{i} R_{i}$$

Kapazitäten:

•

- Parallele Schaltung:
- Reihenschaltung:

$$\frac{1}{C} = \sum_{i} \frac{1}{C_i}$$

 $C = \sum_{i} C_{i}$

1

3.3.3Schwingungen

In einfachen Schleifen mit Spannungsquellen U_l , Induktionen L_k , Widerständen R_j und Kapazitäten C_i ergeben sich meist lineare Differentialgleichungen vom Typ

$$\sum_{k} L_{k}\dot{I} + \sum_{j} R_{j}I + \sum_{i} \frac{Q_{i}}{C_{i}} = \underbrace{\sum_{l} U_{l}}_{\text{Innhomogenität}} \rightarrow \sum_{k} \ddot{I} + \sum_{j} R_{j}\dot{I} + \sum_{i} \frac{I}{C_{i}} = \sum_{l} \dot{U}_{l}$$

bzw. gekoppelte Varianten \rightarrow Lösbar durch e-Ansatz \rightarrow periodische Lösungen (Schwingungen) oder exponentielles Verhalten (meist Abklingen).

Bei periodischer Innhomogenität, speziell harmonischer Erregung der Frequenz $\omega \rightarrow$ suchen quasistationäre Lösung \rightarrow machen periodischen Ansatz vom Typ $I(t) = I_0 e^{i\omega t}$ und gehen damit in die DGL ein.

Methode der Impedanzen: Betrachten harmonisch erregten Stromkreis, mit Erregungsspannung $U = U_0 \cos(\omega t)$. Problem: Berechnung der quasistationären Lösung.

Verallgemeinern den Begriff des Widerstandes zu den so genannten Impedanzen $Z\in\mathbb{C}:$

- Ohmscher Widerstand: $R \to R$
- Induktivität: $L \to i \omega L$
- Kapazität: $C \rightarrow -\frac{i}{\omega C}$

Erweitern (gesuchten) Strom I in einem Stromkreis zum komplexen Strom

$$I = I_0 e^{i\omega t}$$
, $I, I_0 \in \mathbb{C}$

und Spannungsquelle (Erregung)

$$U = U_0 e^{i\omega t} \ , \ U, U_0 \in \mathbb{C}$$

Bemerkung: U_0 und I_0 enthalten Anfangsphase! Ausgehend vom Ohmschen Gesetz \rightarrow Verallgemeinerung:

$$I_0 = \frac{U_0}{Z}$$

wobei Z die Gesamtimpedanz des Stromkreises ist und nach den gleichen Regeln berechnet wird wie bei normalen Ohmschen Widerständen! Der Betrag |Z| wird auch Scheinwiderstand genannt. Der wirkliche Strom I^r ergibt sich schließlich als

$$I^r = \Re \left\{ I_0 e^{i\omega t} \right\}$$

3.3.4 Leistung und Energie im Stromkreis

Allgemein:

- a) Von der Quelle abgegebene Leistung: $P_Q = UI$
- b) An Ohmschen Widerständen verbrauchte Leistung: $P_R = I^2 R$
- c) Zum Aufbau (und Abbau) der Felder verbrauchte Leistung: $P_F=P_Q-P_R$

In harmonischen Schwingungen:

a) Scheinleistung:
$$P_s = \sqrt{\overline{U^2}} \cdot \sqrt{\overline{I^2}} = \frac{1}{2}U_0I_0$$

b) Wirkleistung:
$$P_w = \frac{1}{2}U_0 I_0 \cos(\Delta \varphi) = \overline{P}_R$$

c) Blindleistung:
$$P_b = \frac{1}{2}U_0I_0\sin(\Delta\varphi) = \sqrt{P_s^2 - P_w^2}$$

Energie in Komponenten:

a) In Kapazitäten:

$$W_C = \frac{CU^2}{2}$$
 : elektrische Energie

b) In Induktivitäten:

$$W_L = \frac{LI^2}{2}$$
: magnetische Energie

Energiebilanz:

$$\frac{d}{dt}W_L(t) + \frac{d}{dt}W_C(t) = U_{ext}I(t) - RI^2(t)$$

4 Das vollständige System der Maxwellgleichungen

4.1 Das System der Maxwellgleichungen

4.1.1 Die Maxwellgleichungen im Vakuum

Quellen der Felder:

$$\operatorname{div} \vec{E}(\vec{r},t) = \frac{\rho(\vec{r},t)}{\varepsilon_0} \quad , \ \, \operatorname{div} \vec{B}(\vec{r},t) = 0$$

Wirbel der Felder:

$$\operatorname{rot} \vec{E}(\vec{r},t) = -\frac{\partial}{\partial t} \vec{B}(\vec{r},t) \quad , \ \, \operatorname{rot} \vec{B}(\vec{r},t) = \mu_0 \vec{j}(\vec{r},t) + \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E}(\vec{r},t)$$

4.1.2 Die Maxwellgleichungen in Medien

Quellen der Felder:

$$\operatorname{div} \vec{D}(\vec{r},t) = \rho_e(\vec{r},t) \quad , \quad \operatorname{div} \vec{B}(\vec{r},t) = 0$$

Wirbel der Felder:

$$\operatorname{rot} \vec{E}(\vec{r},t) = -\frac{\partial}{\partial t} \vec{B}(\vec{r},t) \quad , \quad \operatorname{rot} \vec{H}(\vec{r},t) = \vec{j}_e(\vec{r},t) + \frac{\partial}{\partial t} \vec{D}(\vec{r},t)$$

wobe
i $\vec{j}_e=\vec{j}_{conv}+\vec{j}_{cond}$ die makroskopische Stromdichte ist, und

$$\vec{H}(\vec{r},t) = \frac{1}{\mu_0} \left[\vec{B}(\vec{r},t) - \vec{M}(\vec{r},t) \right] \quad , \quad \vec{D}(\vec{r},t) = \varepsilon_0 \vec{E}(\vec{r},t) + \vec{P}(\vec{r},t)$$

Bemerkung: Natürlich gelten die Maxwellgleichungen des Vakuums *auch* in Medien. Doch sind dabei <u>alle</u> Ströme und Ladungen zu betrachten.

4.1.3 Ströme und Kontinuitätsgleichungen

Ladungen:

$$\rho(\vec{r},t) = \rho_e(\vec{r},t) + \rho_p(\vec{r},t)$$

Ströme:

$$\vec{j}(\vec{r},t) = \vec{j}_e(\vec{r},t) + \vec{j}_m(\vec{r},t) + \vec{j}_p(\vec{r},t)$$

mit \vec{j}_m , \vec{j}_p als den molekularen bzw. Polarisationsströmen. Es gilt

$$\vec{j}_p(\vec{r},t) = \frac{\partial}{\partial t} \vec{P}(\vec{r},t) \qquad \qquad \vec{j}_{conv}(\vec{r},t) = \left[\vec{v} \cdot \operatorname{grad} \rho_e(\vec{r},t)\right] \cdot \frac{\vec{v}}{\left|\vec{v}\right|}$$

$$\operatorname{div} \vec{j}_{cond}(\vec{r},t) = \operatorname{div} \vec{j}_m(\vec{r},t) = 0$$

$$\underbrace{\operatorname{div}\vec{j}_{conv}(\vec{r},t)}_{\operatorname{div}\vec{j}_{e}(\vec{r},t)} + \frac{\partial}{\partial t}\rho_{e}(\vec{r},t) = 0$$

$$\operatorname{div} \vec{j}_p(\vec{r},t) + \frac{\partial}{\partial t} \rho_p(\vec{r},t) = 0$$

4.2 Zeitabhängige Felder

4.2.1 Die Response-Funktion

Betrachten:

- Medium reagiert nicht momentan auf Veränderungen der Felder.
- Medium reagiert auf Felder unterschiedlicher Frequenzen unterschiedlich.
- Medium hat lokale, lineare Response-Function $\vec{R}(\vec{r},t)$: Verhalten der Polarisation $\vec{P}(\vec{r},t)$ bei einer Erregung

 $\vec{E}(\vec{r},t) = \vec{e} \cdot \delta(t)$

• Somit ist Reaktion des Mediums für allgemeine Erregungen gegeben durch die Faltung

$$\left| \vec{P}(\vec{r}, \cdot) = R(\vec{r}, \cdot) * \vec{E}(\vec{r}, \cdot) \rightarrow \vec{P}(\vec{r}, t) = \varepsilon_0 \int_{-\infty}^{\infty} R(\vec{r}, \tau) \cdot \vec{E}(\vec{r}, t - \tau) \, d\tau \right|$$

Bemerke: Allgemeines Prinzip der linearen Systeme!

• Fordert man Kausalität, so ist $R(\vec{r}, t) = 0$ für t < 0, also

$$\vec{P}(\vec{r},t) = \varepsilon_0 \int_0^\infty R(\vec{r},\tau) \cdot \vec{E}(\vec{r},t-\tau) \ d\tau$$

4.2.2 Übergang in den Frequenzraum

Aus der Mathematik weis man über die Fouriertransformation der Faltung:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

Nennen für ein beliebiges Feld \vec{F} :

$$\vec{F}_f(\vec{r},\omega) := \mathcal{F}\left[\vec{F}(\vec{r},\cdot)\right](\omega)$$

und führen die (allgemein komplexe) Suszeptibilitätsfunktion des Materials ein

$$\chi(\vec{r},\omega) := \mathcal{F}\left[R(\vec{r},\cdot)\right](\omega)$$

so dass wir erhalten

$$\vec{P}_f(\vec{r},\omega) = \varepsilon_0 \chi(\vec{r},\omega) \cdot \vec{E}_f(\vec{r},\omega) \rightarrow \vec{D}_f(\vec{r},\omega) = \varepsilon_0 \underbrace{[1 + \chi(\vec{r},\omega)]}_{\varepsilon(\vec{r},\omega)} \cdot \vec{E}_f(\vec{r},\omega)$$

mit der komplexen dielektrischen Funktion $\varepsilon(\vec{r}, \omega)$. Durch Rücktransformation erhält man dann:

$$\vec{D}(\vec{r},t) = \mathcal{F}^{-1} \left[\varepsilon_0 \varepsilon(\vec{r},\omega) \cdot \vec{E}_f(\vec{r},\omega) \right]$$

Analog geht man auch für die Leitfähigkeit σ vor:

$$\vec{j}_f(\vec{r},\omega) = \sigma_f(\vec{r},\omega) \cdot \vec{E}_f(\vec{r},\omega)$$

Bemerkung:

- $\Re \{\varepsilon(\omega)\} \to \text{Dispersion}$
- $\Im \{ \varepsilon(\omega) \} \to \text{Absorption}$
- Beide Größen hängen im allgemeinen zusammen

4.2.3 Die Maxwellgleichungen im Fourierraum

Wirbel der Felder:

$$\operatorname{rot} \vec{E}_f(\vec{r},\omega) = i\omega \vec{B}_f(\vec{r},\omega)$$
$$\operatorname{rot} \vec{H}_f(\vec{r},\omega) = -i\omega \vec{D}_f(\vec{r},\omega) + \vec{j}_f(\vec{r},\omega) \cong [-i\omega\varepsilon_0\varepsilon(\vec{r},\omega) + \sigma_f(\vec{r},\omega)] \cdot \vec{E}_f(\vec{r},\omega)$$

4.2.4 Übergangsbedingungen an Grenzen zweier Medien

Zwischen zwei Medien $\varepsilon_1, \varepsilon_2$ ist:

$$\operatorname{rot} \vec{E} = -\frac{\partial}{\partial t} \vec{B} \, \rightsquigarrow \, E_t(\vec{r}, t) : \operatorname{stetig}$$
$$\operatorname{div} \vec{D} = \rho_e \, \rightsquigarrow \, D_n^2(\vec{r}, t) - D_n^1(\vec{r}, t) = \eta_e(\vec{r}, t)$$
$$\operatorname{rot} \vec{H} = \vec{j}_e \, \rightsquigarrow \, H_t^2(\vec{r}, t) - H_t^1(\vec{r}, t) = j_e^{OF}(\vec{r}, t)$$
$$\operatorname{div} \vec{B} = 0 \, \rightsquigarrow \, B_n(\vec{r}, t) : \operatorname{stetig}$$

Speziell für $\eta_e(\vec{r},t)=0$ is
t $D_n(\vec{r},t)$ stetig, so dass folgt

$$\varepsilon_1(\vec{r},\omega)E_n^1(\vec{r},\omega) = \varepsilon_2(\vec{r},\omega)E_n^2(\vec{r},\omega)$$

4.3 Die elektrodynamischen Potentiale und die Eichtransformationen

4.3.1 Potentiale

Analog zu vorhin, führen auch hier Vektor
potential \vec{A} und skalares potential Φ
ein:

$$\vec{E}(\vec{r},t) = -\operatorname{grad} \Phi(\vec{r},t) - \frac{\partial}{\partial t} \vec{A}(\vec{r},t) \quad , \quad \vec{B}(\vec{r},t) = \operatorname{rot} \vec{A}(\vec{r},t)$$

so dass automatisch die homogenen Maxwellgleichungen

$$\operatorname{rot} \vec{E} = -\frac{\partial}{\partial t} \vec{B} \quad , \quad \operatorname{div} \vec{B} = 0$$

erfüllt sind.

4.3.2 Eichtransformationen

Die Potentiale \vec{A} und Φ sind nicht eindeutig bestimmt. Die Transformation

$$\Phi'(\vec{r},t) := \Phi(\vec{r},t) - \frac{\partial}{\partial t} \Psi(\vec{r},t) \quad , \quad \vec{A}'(\vec{r},t) := \vec{A}(\vec{r},t) + \operatorname{grad} \Psi(\vec{r},t)$$

lässt für beliebiges $\Psi(\vec{r},t)$ physikalische Felder \vec{E} und \vec{B} invariant.

4.4 Die Wellengleichungen im Vakuum

4.4.1 Homogene Wellengleichung

Für $\vec{j}(\vec{r},t) = 0$ und $\rho(\vec{r},t) = 0$ ergeben sich sofort die Wellengleichungen

$$\Delta \vec{E}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(\vec{r},t) = 0$$

$$\Delta \vec{B}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{B}(\vec{r},t) = 0$$

mit $c^2 := \frac{1}{\varepsilon_0 \mu_0}$. Grundlösungen sind ebene Wellen:

$$\vec{E}(\vec{r},t) = \vec{E}_0 e^{i\left(\omega t - \vec{k} \cdot \vec{r}\right)} , \ \vec{B}(\vec{r},t) = \vec{B}_0 e^{i\left(\omega t - \vec{k} \cdot \vec{r}\right)}$$

für die notwendigerweise gilt:

 $ec{E} \perp ec{k} \perp ec{B} \perp ec{E}$

Wellen im Vakuum sind somit Transversalwellen! Beweis: Siehe 6.5.1

4.4.2 Inhomogene Wellengleichung

Einarbeitung der inhomogenen Maxwellgleichungen ergibt die gekoppelten, inhomogenen Wellengleichungen

$$\Box \vec{A}(\vec{r},t) - \operatorname{grad} \left[\operatorname{div} \vec{A}(\vec{r},t) + \frac{1}{c^2} \frac{\partial}{\partial t} \Phi(\vec{r},t) \right] = -\mu_0 \vec{j}(\vec{r},t)$$
$$\Box \Phi(\vec{r},t) + \frac{\partial}{\partial t} \left[\operatorname{div} \vec{A}(\vec{r},t) + \frac{1}{c^2} \frac{\partial}{\partial t} \Phi(\vec{r},t) \right] = -\frac{\rho(\vec{r},t)}{\varepsilon_0}$$

 \rightarrow Mittels ge
eigneter Eichtransformationen (Abschnitt 4.3.2) zu entkoppeln! Beweis: Siehe 6.5.2.

Lorentzeichung: Fordern

div
$$\vec{A} + \frac{1}{c^2} \frac{\partial}{\partial t} \Phi(\vec{r}, t) \stackrel{!}{=} 0$$

so dass sich die entkoppelten Wellengleichungen

$$\Delta \vec{A}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{A}(\vec{r},t) = -\mu_0 \vec{j}(\vec{r},t)$$

$$\Delta \Phi(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Phi(\vec{r},t) = -\frac{\rho(\vec{r},t)}{\varepsilon_0}$$

ergeben, deren Lösungen gegeben sind durch die retardierten Potentiale

$$\begin{split} \Phi(\vec{r},t) &= \frac{1}{4\pi\varepsilon_0} \int\limits_{\mathbb{R}^3} \frac{\rho\left(\vec{r}\;',t - \frac{|\vec{r}-\vec{r}\;'|}{c}\right)}{|\vec{r}-\vec{r}\;'|} \; dV' \\ \vec{A}(\vec{r},t) &= \frac{\mu_0}{4\pi} \int\limits_{\mathbb{R}^3} \frac{\vec{j}\left(\vec{r}\;',t - \frac{|\vec{r}-\vec{r}\;'|}{c}\right)}{|\vec{r}-\vec{r}\;'|} \; dV' \end{split}$$

Bemerke: Retardierten Potentiale resultieren aus Kausalität!

Coulomb Eichung Führen die Eichung

$$\operatorname{div} \vec{A}(\vec{r},t) \stackrel{!}{=} 0$$

ein und erhalten aus den ursprünglichen (gekoppelten) Wellengleichungen, für das skalare Potential

$$\Delta \Phi(\vec{r},t) = -\frac{\rho(\vec{r},t)}{\varepsilon_0} \rightarrow \Phi(\vec{r},t) = \frac{1}{4\pi\varepsilon_0} \int\limits_V \frac{\rho(\vec{r}\,',t)}{|\vec{r}-\vec{r}\,'|} \, dV'$$

und für das Vektorpotential die DGL

$$\Box \vec{A}(\vec{r},t) - \frac{1}{c^2} \operatorname{grad} \frac{\partial}{\partial t} \Phi(\vec{r},t) = -\mu_0 \vec{j}(\vec{r},t)$$

Diese ist eigentlich entkoppelt, da Φ bekannt ist. Jedoch ergibt sich durch direktes einsetzen von Φ , Berücksichtigung der Kontinuitätsgleichung, und der Entwicklung

$$\vec{j}(\vec{r},t) = \vec{j}_L(\vec{r},t) + \vec{j}_T(\vec{r},t)$$

wobei div $\vec{j}_T = \operatorname{rot} \vec{j}_L = 0$ ist, schließlich die Wellengleichung

$$\Box \vec{A} = -\mu_0 \vec{j}_T(\vec{r}, t)$$

Dabei ist \vec{j}_L der so genannte *longitudinale* und \vec{j}_T der *transversale* Stromanteil. Somit ergeben sich die Lösungen der Wellengleichung unter der Coulomb Eichung, als

$$\begin{split} \Phi(\vec{r},t) &= \frac{1}{4\pi\varepsilon_0} \int_{\mathbb{R}^3} \frac{\rho\left(\vec{r}\,',t\right)}{|\vec{r}-\vec{r}\,'|} \, dV' \\ \vec{A}(\vec{r},t) &= \frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} \frac{\vec{j}_T\left(\vec{r}\,',t-\frac{|\vec{r}-\vec{r}\,\,'|}{c}\right)}{|\vec{r}-\vec{r}\,'|} \, dV' \end{split}$$

Bemerkungen:

• Der transversale Stromanteil ist nicht geometrisch zu deuten, sondern lediglich im Kontext zu verstehen, dass jedes Vektorfeld in ein Wirbelfeld und ein Gradientenfeld zerlegt werden kann! Es ist:

$$\vec{j}_T(\vec{r}) = \frac{1}{4\pi} \operatorname{rot} \operatorname{rot}_{\vec{r}} \int \frac{\vec{j}(\vec{r}\,',t)}{|\vec{r}-\vec{r}\,'|} \, dV'$$

• Lösungen sind verträglich mit der Coulomb Eichung, denn:

$$0 = -\mu_0 \operatorname{div} \vec{j}_T(\vec{r}, t) = \operatorname{div} \left[\Box \vec{A}(\vec{r}, t) \right] = \Box \operatorname{div} \vec{A}(\vec{r}, t)$$

4.5 Energiesatz der Elektrodynamik - Der Poyntingsche Satz

4.5.1 Vakuum und lineare, isotrope, nicht dispersive Medien

Voraussetzungen:

$$\vec{D}(\vec{r},t) = \varepsilon(\vec{r})\varepsilon_0 \vec{E}(\vec{r},t) \ , \ \vec{H} = \frac{1}{\mu(\vec{r})\mu_0} \vec{B}(\vec{r},t)$$

Definieren den Poynting Vektor

$$\vec{S}(\vec{r},t) := \vec{E}(\vec{r},t) \times \vec{H}(\vec{r},t)$$

und erhalten den Poyntingschen Satz im Vakuum

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \vec{E} \cdot \vec{D} + \frac{1}{2} \vec{B} \cdot \vec{H} \right) + \vec{j}_e \cdot \vec{E} = -\operatorname{div} \vec{S}$$

Beweis: Siehe Abschnitt 6.4.1.

Interpretation: Mit der elektromagnetischen Feldenergiedichte

$$w_e := \frac{1}{2}\vec{E}\cdot\vec{D} + \frac{1}{2}\vec{B}\cdot\vec{H}$$

und der mechanisch errichteten Arbeit

$$\frac{\partial w_k}{\partial t} = \vec{j}_e \cdot \vec{E}$$

stellt der Poyntingsche Satz eine Energiebilanz des Systems V dar:

$$\frac{\partial}{\partial t} \left(W_e + W_k \right) = -\operatorname{div} \vec{S} \to \frac{\partial}{\partial t} (W_m + W_e) = -\int\limits_{\partial V} \vec{S} \, d\vec{A}$$

Hier ist W_k die kinetische bzw. mechanische (insofern keine anderen Kräfte auf die Teilchen wirken) Energie des Systems, und \vec{S} stellt somit die Energiestromdichte der Felder dar.

4.5.2 Dispersive & absorptive Medien - Monochromatische Felder

Voraussetzungen:

$$\varepsilon(\vec{r},\omega)$$
, $\mu(\vec{r},\omega)$

Für monochromatische Felder

$$\vec{E}(\vec{r},t) = \Re \left\{ \vec{E}_f(\vec{r},\omega_0) e^{i\omega_0 t} \right\} \ , \ \vec{H}(\vec{r},t) = \Re \left\{ \vec{H}_f(\vec{r},\omega_0) e^{i\omega_0 t} \right\}$$

ist es notwendig, bei Energiebetrachtungen die zeitliche Mittelung

$$\left\langle \vec{E}^2(\vec{r},t) \right\rangle = \frac{1}{2} \left| \vec{E}_f(\vec{r},\omega_0) \right|^2 \ , \ \left\langle \vec{H}^2(\vec{r},t) \right\rangle = \frac{1}{2} \left| \vec{H}_f(\vec{r},\omega_0) \right|^2$$

der Felder zu betrachten. Es folgt aus obigen Voraussetzungen, der Pointingsche Satz in dispersiven Medien:

$$\frac{\omega_0}{2} \left[\Im \left\{ \vec{E}_f^* \cdot \vec{P}_f \right\} + \Im \left\{ \vec{H}_f^* \cdot \vec{M}_f \right\} \right] + \left\langle \vec{j}_e \cdot \vec{E} \right\rangle = -\operatorname{div} \left\langle S \right\rangle$$

Speziell für lineare Medien

$$\varepsilon(\vec{r},\omega)$$
 , $\mu(\vec{r},\omega)$

 ist

$$\vec{P}_f^*(\vec{r},\omega) = \varepsilon_0 \chi_e(\vec{r},\omega) \vec{E}_f^*(\vec{r},\omega) , \ \vec{M}_f^*(\vec{r},\omega) = \mu_0 \chi_m(\vec{r},\omega) \vec{H}_f^*(\vec{r},\omega)$$

Im Falle $\vec{j}_e = 0$ geht der Satz in die Form

$$\operatorname{div}\left\langle S\right\rangle = -\frac{\omega_0}{2} \left[\varepsilon_0 \Im\left\{\varepsilon(\vec{r},\omega_0)\right\} \left|\vec{E}_f(\vec{r},\omega_0)\right|^2 + \mu_0 \Im\left\{\mu(\vec{r},\omega_0)\right\} \left|\vec{H}_f(\vec{r},\omega_0)\right|^2\right]\right]$$

über.

Bemerkungen:

- Lokale Energieverluste/-gewinne (Senken/Quellen von $\langle S \rangle$) hängen mit $\Im \varepsilon$, $\Im \mu$ zusammen.
- Bereiche mit $\Im \varepsilon, \Im \mu \to 0 \rightsquigarrow$ Transparenzgebiete.

4.5.3 Dispersive & absorptive Medien - Enge Spektren

Voraussetzungen:

$$\varepsilon(\vec{r},\omega) \;,\; \mu(\vec{r},\omega) \;,\; \vec{j}(\vec{r},t)=0$$

Betrachten Felder mit langsam veränderlichen Amplituden

$$\vec{E}(\vec{r},t) = \Re \left\{ \vec{E}_0(\vec{r},t) e^{i\omega_0 t} \right\}$$

mit engen Spektra

$$\vec{E}_0(\vec{r},t) = \int_{\Delta\omega} \vec{E}_{0f}(\vec{r},\omega) e^{i\omega t} \, d\omega \, \rightsquigarrow \, \vec{E}_f(\vec{r},\omega) = \vec{E}_{0f}(\vec{r},\omega-\omega_0)$$

Dann lautet der Poyntingsche Satz unter Näherungen:

$$\frac{\partial}{\partial t} \left\langle w(\vec{r},t) \right\rangle = -\operatorname{div} \left\langle S(\vec{r},t) \right\rangle - \varepsilon_0 \omega_0 \Im \left\{ \varepsilon(\vec{r},\omega_0) \right\} \left\langle \vec{E}^2(\vec{r},t) \right\rangle + \mu_0 \omega_0 \Im \left\{ \mu(\vec{r},\omega_0) \right\} \left\langle \vec{H}^2(\vec{r},t) \right\rangle$$

mit der zeitlich gemittelten Energiedichte

$$\left\langle w(\vec{r},t)\right\rangle = \frac{\varepsilon_0}{2} \frac{\partial \left[\omega_0 \Re\left\{\varepsilon(\vec{r},\omega_0)\right\}\right]}{\partial \omega_0} \left\langle \vec{E}^2(\vec{r},t)\right\rangle + \frac{\mu_0}{2} \frac{\partial \left[\omega_0 \Re\left\{\mu(\vec{r},\omega_0)\right\}\right]}{\partial \omega_0} \left\langle \vec{H}^2(\vec{r},t)\right\rangle$$

Bemerke:

• Im Transparenzgebiet ist

$$\frac{\partial}{\partial t}\left\langle w(\vec{r},t)\right\rangle =-\operatorname{div}\left\langle \vec{S}(\vec{r},t)\right\rangle$$

• Bei zu vernachlässigender Dispersion ist

$$\left\langle w(\vec{r},t)\right\rangle = \frac{1}{2}\varepsilon_0 \Re\left\{\varepsilon(\vec{r},\omega_0)\right\} \left\langle \vec{E}^2(\vec{r},t)\right\rangle + \frac{1}{2}\mu_0 \Re\left\{\mu(\vec{r},\omega_0)\right\} \left\langle \vec{H}^2(\vec{r},t)\right\rangle$$

4.6 Der Impulssatz der Elektrodynamik

Annahme: Feld und sich bewegende Ladung im Vakuum.

4.6.1 Die Kraftdichte

Allgemein gegeben durch

$$\vec{f}(\vec{r},t) = \rho(\vec{r},t)\vec{E}(\vec{r},t) + \vec{j}(\vec{r},t) \times \vec{B}(\vec{r},t)$$

4.6.2 Der Maxwellsche Spannungstensor

Mit $\vec{D} = \varepsilon_0 \vec{E}$ und $\vec{B} = \mu_0 \vec{H}$ ist der Maxwellsche Spannungstensor des elektromagnetischen Feldes im Vakuum definiert als Tensor 2. Stufe: $T_{ii}(\vec{r}, t) = \varepsilon_0 E_i E_i \pm \mu_0 H_i H_i = \delta_{ii} w(\vec{r}, t)$

$$T_{ij}(\vec{r},t) = \varepsilon_0 E_i E_j + \mu_0 H_i H_j - \delta_{ij} w(\vec{r},t)$$

mit der Energiedichte

$$w(\vec{r},t) = \frac{\varepsilon_0}{2}\vec{E}^2 + \frac{\mu_0}{2}\vec{H}^2$$

4.6.3 Impulsbilanz

Die Impulsdichte des elektromagnetischen Feldes im Vakuum ist gegeben durch

$$\vec{p}_e(\vec{r},t) = \frac{1}{c^2}\vec{S}(\vec{r},t) = \frac{1}{c^2}\vec{E}(\vec{r},t) \times \vec{H}(\vec{r},t)$$

Somit Impuls des gesamten Feldes:

$$\vec{P}_e(t) = \int\limits_V \vec{p}_e(\vec{r},t) \ dV$$

Bilanz für mechanische Impuls
dichte $\vec{p_m}(\vec{r},t)$:

$$\dot{\vec{p}}_m(\vec{r},t)=\vec{f}(\vec{r},t)$$

Für den mechanischen Impuls $\vec{P_m}$ der geladenen Teilchen im System gilt somit

$$\frac{d}{dt}\vec{P}_m(t) = \int\limits_V \vec{f}(\vec{r},t) \ dV$$

Lokale Impulsbilanz:

$$\frac{1}{c^2}\frac{\partial}{\partial t}\vec{S} + \vec{f} = \operatorname{div}\hat{T} = \frac{\partial T_{ij}}{\partial x_j}\vec{e}_i \rightarrow \frac{d}{dt}\left(\vec{p}_e + \vec{p}_m\right) = \operatorname{div}\hat{T}$$

Globale Impulsbilanz:

$$\frac{d}{dt}\left(\vec{P}_e + \vec{P}_m\right) = \int\limits_{\partial V} \hat{T} \cdot d\vec{A}$$

Bemerkung: \hat{T} stellt die (Tensorielle) Impulsstromdichte des elektromagnetischen Feldes dar!

5 Elektromagnetische Wellen

5.1 Vakuum

Voraussetzung: Keine Quelle und Wirbel: $\vec{j} = \rho = 0$

5.1.1 Potentialgleichungen

Lorenz Eichung:

Lorenz Eichung: div $\vec{A}(\vec{r},t)+\frac{1}{c^2}\Phi(\vec{r},t)=0$

Wellengleichungen:
$$\Delta \Phi(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Phi(\vec{r},t) = 0$$
, $\Delta \vec{A}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{A}(\vec{r},t) = 0$

Felder:
$$\vec{E}(\vec{r},t) = -\frac{\partial}{\partial t}\vec{A}(\vec{r},t) - \operatorname{grad}\Phi(\vec{r},t)$$
, $\vec{B}(\vec{r},t) = \operatorname{rot}\vec{A}(\vec{r},t)$

Coulomb Eichung:

Coulomb Eichung: div $\vec{A}(\vec{r},t) = 0$

Poisson & Wellengleichung:
$$\Delta \Phi(\vec{r},t) = 0$$
, $\Delta \vec{A}(\vec{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{A}(\vec{r},t) = 0$

Felder:
$$\vec{E}(\vec{r},t) = -\frac{\partial}{\partial t}\vec{A}(\vec{r},t)$$
, $\vec{B}(\vec{r},t) = \operatorname{rot} \vec{A}(\vec{r},t)$

Einfachste Lösung: Transversale, ebene Wellen:

$$\vec{A}(\vec{r},t) = \vec{a} \left(\vec{k}\right) e^{i\left(\omega t - \vec{k} \cdot \vec{r}\right)} , \text{ div } \vec{A}(\vec{r},t) = 0 \rightarrow \vec{a} \perp \vec{k}$$

Dispersionsrelation:

 $k^2=\frac{\omega^2}{c^2}$, $\,c$: Phasengeschwindigkeit, \vec{k} : Wellenvektor, ω : Kreisfrequenz

Zeitliche Periode:

Räumliche Periode:

$$T = \frac{2\pi}{\omega} = \frac{1}{\nu}$$
, ν : Frequenz

 $\lambda = \frac{2\pi}{k}$

Somit Variante der Dispersionsrelation:

$$\vec{k} \cdot \vec{r} = const \rightarrow \text{Ebenen im Raum} \perp \vec{k}$$

Felder:

$$\vec{E}(\vec{r},t) = i\omega\vec{A}(\vec{r},t) \ , \ \vec{B}(\vec{r},t) = i\vec{k}\times\vec{A}(\vec{r},t) \ \rightarrow \ \vec{B}(\vec{r},t) = \frac{1}{\omega}\vec{k}\times\vec{E}(\vec{r},t)$$

Somit bilden $\vec{k}, \vec{E}, \vec{B}$ rechtshändiges Dreibein.

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

$$\vec{A}(\vec{r},t) = \Re \left\{ \sum_{j=1}^{2} a_j(\vec{k}) e^{i\left(\omega t - \vec{k}(\omega)\vec{r} + \vartheta_j\right)} \cdot \vec{e}_j \right\}$$

Somit Polarisationszustände: Elliptisch, Linear.

Lösungen stellen Normalmoden dar, die zur Konstruktion beliebiger raum-zeitlich lokalisierter Wellenfelder benutzt werden können!

 $c=\lambda\nu$

5.1.2 Feldgleichungen

Folgen direkt aus Maxwellgleichungen:

$$\begin{split} \Delta \vec{E}(\vec{r},t) &- \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(\vec{r},t) = 0 \\ \Delta \vec{B}(\vec{r},t) &- \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{B}(\vec{r},t) = 0 \end{split}$$

Beweis: Siehe Abschnitt 6.5.1

5.2 Transparente, homogene Medien

Voraussetzungen:

- Unmagnetisches Medium: $\mu = 1$
- Transparentes, homogenes Medium: $\varepsilon(\vec{r}, \omega) = \varepsilon(\omega) \in \mathbb{R}$
- Externe Quellen & Wirbel verschwinden: $\vec{j}_e=\rho_e=0$

Ergibt Helmholtz-Gleichung:

$$\Delta \vec{E}_f(\vec{r},\omega) + \frac{\omega^2}{c^2} \varepsilon(\omega) \vec{E}_f(\vec{r},\omega) = 0$$

Einfachste Lösungen: Ebene Wellen analog zu Vakuum, nur jetzt im Fourierraum:

$$\vec{E}_f(\vec{r},\omega) = \vec{e}(\vec{k},\omega)e^{i\vec{k}\cdot\vec{r}}$$

Aus DGL folgt Dispersions relation:

$$k^2 = \frac{\omega^2}{c^2} \varepsilon(\omega)$$

 \rightarrow Feld

$$\vec{E}(\vec{r},t) = \Re \int_{-\infty}^{\infty} \vec{e}(\vec{k(\omega)}) e^{i(\omega t - k(\omega)\vec{r})} \ d\omega$$

Betrachten nur enge Frequenzspektren: $|\vec{e}| \neq 0$ nur im Intervall $\Delta \omega$ um $\omega_0 \rightarrow$ Taylorentwicklung von $k(\omega)$ und Integration liefert:

- Phasengeschwindigkeit $v_p(\omega_0) = \frac{\omega_0}{k(\omega_0)}$
- Gruppengeschwindigkeit $v_g(\omega_0) = \frac{\partial \omega}{\partial k} \mid_{\omega_0}$
- Dispersion der Gruppengeschwindigkeit $D(\omega_0)=\frac{\partial^2 k}{\partial \omega^2}\mid_{\omega_0}$

6 Herleitung der wichtigsten Sätze

6.1 Kontinuitätsgleichung

6.1.1 Lokale Ladungserhaltung

Beginnen mit

$$\operatorname{rot} \vec{H} = \vec{j} + \vec{D} \ , \ \operatorname{div} \vec{D} = \rho$$

und schreiben

$$0 = \operatorname{div}\operatorname{rot}\vec{H} = \operatorname{div}\vec{j} + \operatorname{div}\frac{\partial}{\partial t}\vec{D} = \operatorname{div}\vec{j} + \frac{\partial}{\partial t}\operatorname{div}\vec{D} = \operatorname{div}\vec{j} + \dot{\rho}$$

also:

 $\operatorname{div} \vec{j} + \dot{\rho} = 0$

Bemerke: Obere Gleichung gilt für \vec{j}_{mak} , ρ_{mak} aber insbesondere auch für \vec{j}_{ges} , ρ_{ges} .

6.1.2 Globale Ladungserhaltung

Für ein beliebiges die Ladung Q umschließendes Volumen V gilt nach obiger Rechnung

$$\frac{\partial Q}{\partial t} = \int_{V} \dot{\rho} \ dV = -\int_{V} \operatorname{div} \vec{j} \ dV = -\int_{\partial V} \vec{j} \ d\vec{A}$$

6.2 Energie beim Dirichlet Randwertproblem

6.2.1 Bei vorgegebenen Potentialen auf Leitern

Betrachten Leiter L_i mit den Potentialen U_i und externe Ladungsverteilung $\rho(\vec{r})$. Durch die Greensche Funktion $G(\vec{r}, \vec{r}')$ erhält man die Geometriekoeffizienten $\Gamma_i(\vec{r})$, die Kapazitätskoeffizienten C_{ij} und das Potential

$$\Phi(\vec{r}) = \Phi_{\rho}(\vec{r}) + \sum_{i} U_{i} \cdot \Gamma_{i}(\vec{r})$$

Die Ladung auf dem Leiter L_i ist gegeben durch

$$Q_j = -\varepsilon_0 \int\limits_{\partial L_j} \frac{\partial \Phi_\rho(\vec{r})}{\partial \tilde{n}_j} \, dA + \sum_i U_i C_{ij}$$

und die Energie somit durch

$$\begin{split} W &= \frac{1}{2} \int_{V} \Phi(\vec{r}) \rho(\vec{r}) \ dV + \frac{1}{2} \sum_{j} U_{j} Q_{j} \\ &= \frac{1}{2} \int_{V} \Phi_{\rho}(\vec{r}) \rho(\vec{r}) \ dV + \frac{1}{2} \sum_{i} U_{i} \int_{V} \Gamma_{i}(\vec{r}) \rho(\vec{r}) \ dV - \frac{\varepsilon_{0}}{2} \sum_{j} U_{j} \int_{\partial L_{j}} \frac{\partial \Phi_{\rho}(\vec{r})}{\partial \tilde{n}_{j}} \ dA + \frac{1}{2} \sum_{i,j} U_{j} U_{i} C_{ij} \end{split}$$

Nebenrechnung:

$$\int_{V} \Gamma_{j}(\vec{r})\rho(\vec{r}) \, dV = -\varepsilon_{0} \int_{V} \int_{\partial L_{j}} \frac{\partial G(\vec{r},\vec{r}\,')}{\partial n_{j}'} \rho(\vec{r}) dA' \, dV \stackrel{Sub: \vec{r} \leftrightarrow \vec{r}\,'}{=} -\varepsilon_{0} \int_{V} \int_{\partial L_{j}} \frac{\partial G(\vec{r}\,',\vec{r})}{\partial n_{j}} \rho(\vec{r}\,') \, dA \, dV'$$

$$\stackrel{G \ Symmetrisch}{=} -\varepsilon_{0} \int_{V} \int_{\partial L_{j}} \frac{\partial G(\vec{r},\vec{r}\,')}{\partial n_{j}} \rho(\vec{r}\,') \, dA \, dV' = \varepsilon_{0} \int_{V} \int_{\partial L_{j}} \frac{\partial G(\vec{r},\vec{r}\,')}{\partial \tilde{n}_{j}} \rho(\vec{r}\,') \, dA \, dV'$$

$$= \varepsilon_{0} \int_{\partial L_{j}} \frac{\partial}{\partial \tilde{n}_{j}} \int_{V} G(\vec{r},\vec{r}\,') \rho(\vec{r}\,') \, dV' \, dA = \varepsilon_{0} \int_{\partial L_{j}} \frac{\partial}{\partial \tilde{n}_{j}} \Phi_{\rho}(\vec{r}) \, dA$$

Somit ist

$$W = \frac{1}{2} \int_{V} \Phi_{\rho}(\vec{r}) \rho(\vec{r}) \, dV + \frac{1}{2} \sum_{i,j} U_j U_i C_{ij} \quad \Box$$

Notation: $\frac{\partial}{\partial \tilde{n}}$ bzw. $\frac{\partial}{\partial n}$ sind die Normalableitungen aus dem Leiter hinaus bzw. in den Leiter hinein.

6.3 Drehmoment im äußeren Magnetfeld

6.3.1 Stromdurchflossene Leiterschleife

Vorgegeben:

a) Konstantes äußeres Magnetfeld \vec{B}

b) Geschlossene, parametrisierte Kurve $\vec{s}(t)$, $\vec{s}: [0,1] \mapsto S$ (Leiterschleife), in der ein stationärer Strom I fließt.

Zu zeigen:

$$\vec{M} = I \cdot \int_{S} \vec{s} \times \left(d\vec{s} \times \vec{B} \right) \stackrel{}{\uparrow} \frac{I}{2} \int_{S} \left(\vec{s} \times d\vec{s} \right) \times \vec{B} = \frac{1}{\mu_0} \vec{m} \times \vec{B}$$

Also zu zeigen:

$$2\int_{S} \vec{s} \times \left(d\vec{s} \times \vec{B} \right) = \int_{S} \left(\vec{s} \times d\vec{s} \right) \times \vec{B} \iff \vec{J} := \int_{S} \left\{ 2\vec{s} \times \left(d\vec{s} \times \vec{B} \right) + \vec{B} \times \left(\vec{s} \times d\vec{s} \right) \right\} = 0$$

Beginnen also:

$$\vec{J} = \int_{S} \left\{ 2d\vec{s} \cdot \left(\vec{s} \cdot \vec{B}\right) - 2\vec{B} \cdot \left(\vec{s} \cdot d\vec{s}\right) + \vec{s} \cdot \left(\vec{B} \cdot d\vec{s}\right) - d\vec{s} \cdot \left(\vec{B} \cdot \vec{s}\right) \right\}$$
$$= \int_{0}^{1} \left\{ \dot{\vec{s}} \cdot \left(\vec{s} \cdot \vec{B}\right) - 2\vec{B} \cdot \left(\vec{s} \cdot \dot{\vec{s}}\right) + \vec{s} \cdot \left(\vec{B} \cdot \dot{\vec{s}}\right) \right\} dt = \int_{0}^{1} \left\{ \frac{d}{dt} \left[\vec{s} \cdot \left(\vec{s} \cdot \vec{B}\right)\right] - \vec{B} \cdot \frac{d}{dt} \vec{s}^{2} \right\} dt$$
$$= \left[\vec{s} \cdot \left(\vec{s} \cdot \vec{B}\right) - \vec{B} \cdot \vec{s}^{2}\right]_{0}^{1} \stackrel{\vec{s}(0) = \vec{s}(1)}{=} 0 \quad \Box$$

6.4 Der Poyntingsche Satz

6.4.1 Vakuum

Beginnend mit den Maxwell Gleichungen

$$\operatorname{rot} \vec{E} = -\vec{B} \ , \ \operatorname{rot} \vec{H} = \vec{j} + \vec{D}$$

unter den Voraussetzungen

$$\vec{D} = \varepsilon_0 \varepsilon(\vec{r}) \vec{E}$$
, $\vec{B} = \mu_0 \mu(\vec{r}) \vec{H}$

 $\operatorname{schreiben}$ wir

$$\operatorname{div}\left(\underbrace{\vec{E}\times\vec{H}}_{\vec{S}}\right) = \vec{H}\cdot\operatorname{rot}\vec{E} - \vec{E}\cdot\operatorname{rot}\vec{H} = -\vec{H}\cdot\vec{B} - \vec{E}\cdot\vec{j} - \vec{E}\cdot\vec{D} = -\frac{1}{\mu\mu_0}\vec{B}\cdot\vec{B} - \varepsilon\varepsilon_0\vec{E}\cdot\vec{E} - \vec{j}\cdot\vec{E}$$
$$= -\frac{\partial}{\partial t}\left[\underbrace{\frac{\varepsilon_0\varepsilon}{2}\vec{E}^2 + \frac{1}{2\mu_0\mu}\vec{B}^2}_{w_e}\right] - \vec{j}\cdot\vec{E}$$
$$\xrightarrow{w_e}$$
$$\rightarrow \frac{\partial}{\partial t}(w_e + w_k) = -\operatorname{div}\vec{S}$$

wobei w_e und w_k jeweils die elektromagnetische und kinetische Energiedichte sind. Wirken keine anderen Kräfte im System, so ist w_k gleichzeitig die mechanische Energiedichte. Ist div $\vec{S} = 0$, so gilt gesamt-Energieerhaltung. Ferner gilt allgemein für ein Volumen V die Energiebilanz

$$\frac{\partial W}{\partial t} = \int_{V} \frac{\partial}{\partial t} (w_e + w_k) \, dV = -\int_{V} \operatorname{div} \vec{S} \, dV = -\int_{\partial V} \vec{S} \, d\vec{A}$$

Die Energieänderung in einem System ist also gleich dem Fluss von $\vec{S} = \vec{E} \times \vec{H}$ durch die umschließende Oberfläche (nach innen).

6.5 Wellengleichung

6.5.1 Homogen - Vakuum

Beginnend mit den Maxwell Gleichungen

$$\operatorname{rot} \vec{E} = -\dot{\vec{B}} \,, \, \operatorname{rot} \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \dot{\vec{E}}$$

unter den Voraussetzungen

$$\rho = 0 \quad , \quad \vec{j} = 0$$

schreiben wir

$$\operatorname{grad} \underbrace{\operatorname{div} \vec{E}}_{0} - \Delta \vec{E} = \operatorname{rot} \operatorname{rot} \vec{E} = -\operatorname{rot} \dot{\vec{B}} = -\frac{\partial}{\partial t} \dot{\vec{B}} = -\frac{\partial}{\partial t} \left[\underbrace{\mu_{0} \vec{j}}_{0} + \frac{1}{c^{2}} \frac{\partial}{\partial t} \vec{E} \right]$$

Bekommen so für das $\vec{E}\text{-}\mathrm{Feld}$

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = 0$$

Gehen für das \vec{B} -Feld analog vor, gemäß

$$\operatorname{rot}\operatorname{rot}\vec{B} = \operatorname{grad}\underbrace{\operatorname{div}\vec{B}}_{0} - \Delta\vec{B} = \operatorname{rot}\left[\underbrace{\mu_{0}\vec{j}}_{0} + \frac{1}{c^{2}}\frac{\partial}{\partial t}\vec{E}\right] = \frac{1}{c^{2}}\frac{\partial}{\partial t}\operatorname{rot}\vec{E} = -\frac{1}{c^{2}}\frac{\partial}{\partial t}\dot{\vec{B}} = -\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\vec{B}$$

und erhalten

$$\Delta \vec{B} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{B} = 0$$

Aussage: Ebene Wellen sind Lösungen:

$$\vec{E}(\vec{r},t) = \vec{E}_0 e^{i\left(\omega t - \vec{k} \cdot \vec{r}\right)} , \ \vec{B}(\vec{r},t) = \vec{B}_0 e^{i\left(\omega t - \vec{k} \cdot \vec{r}\right)} , \ k^2 = \frac{\omega^2}{c^2}$$

Beweis:

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \Delta E^j \vec{e}_j - \frac{1}{c^2} \frac{\partial^2 E^j}{\partial t^2} \vec{e}_j = \sum_j E_0^j \frac{\partial^2}{\partial x_j^2} e^{i(\omega t - \vec{k} \cdot \vec{r})} \vec{e}_j - \frac{1}{c^2} \sum_j E_0^j \frac{\partial^2}{\partial t^2} e^{i(\omega t - \vec{k} \cdot \vec{r})} \vec{e}_j = -k^2 \vec{E} + \frac{\omega^2}{c^2} \vec{E} = 0$$

Analog auch für \vec{B} . \Box

Aussage: \vec{E} und \vec{B} sind Transversalwellen:

$$\vec{B} \perp \vec{k} \perp \vec{E}$$

Beweis:

$$0 = \operatorname{div} \vec{E} = \frac{\partial E^j}{\partial x_j} = E_0^j \frac{\partial}{\partial x_j} e^{i(\omega t - \vec{k} \cdot \vec{r})} = -iE_0^j k_j e^{i(\omega t - \vec{k} \cdot \vec{r})} = -i\vec{k} \cdot \vec{E}$$

 $\rightarrow \ \vec{k} \cdot \vec{E} = 0 \ \rightarrow \ \vec{E} \perp \vec{k}$

Analog auch für \vec{B} . \Box

Aussage: \vec{E} -Feld steht senkrecht auf \vec{B} -Feld:

 $\vec{E} \perp \vec{B}$

Beweis:

$$i\omega \vec{B} = \frac{\partial}{\partial t} \vec{B} = -\operatorname{rot} \vec{E} = -\varepsilon_{ljk} \frac{\partial}{\partial x_l} E^j \vec{e}_k = ik^l \varepsilon_{ljk} E^j \vec{e}_k = i\vec{k} \times \vec{E}$$
$$\rightarrow \vec{E} \cdot \vec{B} = \frac{1}{\omega} \cdot \vec{E} \cdot \left(\vec{k} \times \vec{E}\right) = 0 \quad \rightarrow \quad \vec{E} \perp \vec{B}$$

6.5.2 Inhomogen - Vakuum

Wegen div $\vec{B} = 0$ führen wir das Vektorpotential \vec{A} ein, so dass gilt:

$$\operatorname{rot} \vec{A} = \vec{B}$$

Aus rot $\vec{E}=-\dot{\vec{B}}$ folgt

$$0 = \operatorname{rot} \vec{E} + \dot{\vec{B}} = \operatorname{rot} \vec{E} + \frac{\partial}{\partial t} \operatorname{rot} \vec{A} = \operatorname{rot} \left[\vec{E} + \frac{\partial \vec{A}}{\partial t} \right]$$

so dass wir auch ein Potentialfeld φ einführen, mit:

$$\vec{E} + \frac{\partial \vec{A}}{\partial t} = -\operatorname{grad} \Phi \ \rightarrow \ \vec{E} = -\operatorname{grad} \Phi - \frac{\partial \vec{A}}{\partial t}$$

Verwenden jetzt die inhomogenen Maxwell-Gleichungen und bekommen

$$\operatorname{rot} \vec{B} = \operatorname{rot} \operatorname{rot} \vec{A} = \operatorname{grad} \operatorname{div} \vec{A} - \Delta \vec{A} = \mu_0 \vec{j} + \frac{1}{c^2} \dot{\vec{E}} = \mu_0 \vec{j} - \frac{1}{c^2} \frac{\partial}{\partial t} \left[\operatorname{grad} \Phi + \frac{\partial \vec{A}}{\partial t} \right]$$

$$\rightarrow \Box \vec{A} = \Delta \vec{A} - \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{j} + \text{grad} \left[\text{div} \, \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} \right]$$

sowie

$$\frac{\rho}{\varepsilon_0} = \operatorname{div} \vec{E} = -\Delta\Phi - \operatorname{div} \frac{\partial \vec{A}}{\partial t} = -\Delta\Phi - \frac{\partial}{\partial t} \operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -\Delta\Phi + \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} - \frac{\partial}{\partial t} \left[\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} \right]$$

$$\rightarrow \ \Box \Phi = \Delta \Phi - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -\frac{\rho}{\varepsilon_0} - \frac{\partial}{\partial t} \left[\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} \right]$$

Es gilt für eine beliebige skalare Funktion Ψ , dass eine Transformation

$$\vec{A}' := \vec{A} + \operatorname{grad} \Psi$$
, $\Phi' := \Phi - \frac{\partial \Psi}{\partial t}$

das $\vec{E}\text{-}\mathrm{Feld}$ und das $\vec{B}\text{-}\mathrm{Feld}$ unverändert lässt. Such en deshalb ein Ψ so dass

$$\operatorname{div} \vec{A}' + \frac{1}{c^2} \frac{\partial \Phi'}{\partial t} = 0$$

ist. Obere Transformation ist die so genannte Lorentz Eichung. Wir erhalten durch die Forderung

$$\operatorname{div} \vec{A}' + \frac{1}{c^2} \frac{\partial \Phi'}{\partial t} = \operatorname{div} \vec{A} + \Delta \Psi + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} - \frac{1}{c^2} \frac{\partial^2 \Psi}{\partial t^2} \stackrel{!}{=} 0$$

die DGL

$$\Box \Psi = -\operatorname{div} \vec{A} - \frac{1}{c^2} \frac{\partial \Phi}{\partial t}$$

die für alle \vec{A} und Φ stets lösbar ist. Somit ist die Lorentz Transformation stets durchführbar, und wir nennen um:

$$\vec{A}' \to \vec{A} , \ \Phi' \to \Phi$$

so dass wir schließlich die inhomogenen Wellengleichungen

$$\Box \Phi(\vec{r},t) = -\frac{\rho(\vec{r},t)}{\varepsilon_0} \quad , \quad \Box \vec{A}(\vec{r},t) = -\mu_0 \vec{j}(\vec{r},t)$$

erhalten. \Box

Aussage: Die Lösungen obiger Wellengleichung erfüllen die Lorenz-Eichung! Beweis: Beginnen mit

$$\Box \vec{A}(\vec{r},t) = -\mu_0 \vec{j}(\vec{r},t) \rightarrow \operatorname{div} \left[\Box \vec{A}(\vec{r},t)\right] = -\mu_0 \operatorname{div} \vec{j}(\vec{r},t)$$

$$a(\vec{r},t) = 1, \partial, \qquad \partial$$

$$\Box \Phi(\vec{r},t) = -\frac{\rho(\vec{r},t)}{\varepsilon_0} \rightarrow \frac{1}{c^2} \frac{\partial}{\partial t} \left[\Box \Phi(\vec{r},t)\right] = -\mu_0 \frac{\partial}{\partial t} \rho(\vec{r},t)$$

und addieren beide Ausdrücke:

$$\Box \left[\operatorname{div} \vec{A}(\vec{r},t) + \frac{1}{c^2} \frac{\partial}{\partial t} \Phi(\vec{r},t) \right] = -\mu_0 \left[\operatorname{div} \vec{j}(\vec{r},t) + \frac{\partial}{\partial t} \rho(\vec{r},t) \right] = 0$$