Einführung in die Astronomie - Übungen

Astrophysikalisches Institut und Universitätssternwarte Jena Thüringer Landessternwarte Tautenburg

Ausgabe: 2010-01-12, Abgabe: 2010-01-19.

10. Übungsblatt

Aufgabe 10.1

Ein riesiger Sonnenfleck bedecke die ganze Sonnenscheibe. Wäre der Tag dann dunkler als eine Vollmondnacht (wie sie *ohne* Sonnenfleck wäre)? Hinweis: Ein Vergleich der bolometrischen Helligkeiten genügt. (1 Punkt)

Aufgabe 10.2

Die siderische Rotationsperiode der Sonne (am Äquator) dauert etwa 25 Tage. Wie groß ist – von der Erde aus beobachtet – die synodische Periode der Sonnenrotation? Wie ändert sich der Wert für Neptun oder Merkur? (1 Punkt)

Zusatz zu Aufgabe 10.2

Apropos Rotation und Sonne: Wie groß ist die große Halbachse eines "heliostationären" Orbits? (1 Zusatzpunkt)

Aufgabe 10.3

Zwei Personen betrachten den Sonnenaufgang. Eine Person befindet sich auf einem Schiff, die andere auf dem Gipfel eines 4000 m hohen Berges. Für wen erscheint die Sonne heller (und um wie viel?).* (3 Punkte)

Aufgabe 10.4

Die Masse eines α -Teilchens (Heliumkerns) ist etwa 0,7% kleiner als die Masse von 4 Protonen. Zeige, dass die nukleare Reaktion, die die α -Teilchen erzeugt, die gegenwärtige Leuchtkraft der Sonne für ein paar weitere Milliarden Jahre halten kann. Wie groß ist das Verhältnis der Anzahl von Photonen[†] zu Neutrinos, die von der Sonne pro Sekunde abgestrahlt werden? Hinweis: 2% der Energie, die bei der Produktion eines einzelnen α -Teilchens entstehen, werden von den Neutrinos "davongetragen". (2 Punkte)

Zusatzaufgabe 10.5

Wo ist die Randverdunklung der Sonne stärker, im nahen ultravioletten Licht oder im nahen infraroten? Warum ist dies so? (1 Zusatzpunkt)

Internet: http://www.astro.uni-jena.de/Users/tloehne/EinfAstro/

E-Mail: tloehne@astro.uni-jena.de

^{*}Annahme: Homogene Atmosphäre mit optischer Tiefe = 0.1 in vertikaler Richtung.

[†]Durchschnittliche Energie pro Photon: E = 2.7kT (wobei: k = Boltzmann-Konstante, T = Temperatur).