Stability of Clouds and the Jeans Criterion

Stilianos Louca

May 12, 2010

Contents

- Introduction to molecular clouds.
- > The Jeans stability criterium for molecular clouds.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

► The process of collapse.

Molecular Clouds

Characterization

- Interstellar aggregations of matter.
- ▶ Consist mainly of molecules (H₂, CO): 99%.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Typical temperatures $T \sim 10$ K.
- Typical densities $\rho \sim 10^{-22} \rho_{\odot}$.

Giant Molecular Clouds (GMC)

- Diameters up to 10^2 pc.
- Masses up to $10^6 M_{\odot}$.

- Introduction

Molecular Clouds

The Cepheus B GMC

Figure: Composite image of Cepheus B, a GMC about 2400 Lj away. Red, green & blue data is in infrared, violet in X-Ray spectrum. The image span is about 3 pc. [NASA]

Star formation from GMCs

Importance of GMCs:

- Main source of star formation \rightarrow "Stellar nurseries".
- Collapsing GMCs create newborn stars.
- \blacktriangleright Lifetime of a GMC $\approx 10^7~\mathrm{j} \approx$ free fall time.

Collapse may be triggered by:

- Inner gravitational forces & instabilities.
- Shock-waves from nearby supernovae.
- Radiation pressure of nearby, massive stars.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Stability of GMCs

Forces acting on particles:

- Self-gravitational
- Internal gas pressure
- Magnetic fields, Radiation, Centrifugal, ...

Question: When does self-gravity lead to a collapse?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Depends on:

- Temperature
- Size
- Density
- Fields, Rotation, ..

Linear perturbation theory

Linear perturbation theory

Model:

- Homogeneous, isotropic background.
- Inviscid fluid.
- Only internal gravity and gas pressure.
- Background velocity $\mathbf{v}_0 = 0$.
- Constant background density ρ_0 and pressure p_0 .
- Constant temperature $T \rightarrow$ isothermal processes.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Sought: Evolution of perturbations.

Small density perturbations $\delta \rho \rightarrow$ Linearization.

Linear perturbation theory

Linear perturbation theory

Equations:

Euler equations of motion:

$$\frac{\partial \mathbf{v}}{\partial t} + (\nabla \mathbf{v}) \cdot \mathbf{v} = -\frac{1}{\rho} \nabla \rho - \nabla \Phi \quad . \tag{1}$$

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \quad . \tag{2}$$

Newton's law:

$$\Delta \Phi = 4\pi G \rho \quad . \tag{3}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Equation of state: $p = p(\rho, T)$.

With: gravitational potential Φ , gravitational constant *G*, temperature *T*, pressure *p*, density ρ , velocity **v**.

Linear perturbation theory

Linear perturbation theory

Starting point: Background solves equations, so should distorted fluid.

Linearization yields:

$$\frac{\partial^2 \delta \rho}{\partial t^2} = c_s^2 \cdot \Delta \delta \rho + 4\pi G \rho_0 \cdot \delta \rho \tag{4}$$

with isothermal speed of sound c_s .

Plane wave ansatz $\delta \rho \sim \exp[i(\mathbf{k}\mathbf{x} - \omega t)]$ gives dispersion relation

$$\omega^2 = c_s^2 \mathbf{k}^2 - 4\pi G \rho_0 \quad . \tag{5}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 \rightarrow For large wavelengths $\lambda,\,\omega$ becomes imaginary!

Linear perturbation theory

Linear perturbation theory

Conclusion:

Jeans length

$$\lambda_J := c_s \cdot \sqrt{\frac{\pi}{G\rho_0}} \tag{6}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

is maximum wavelength for stable perturbation.

- ▶ Perturbations/inhomogeneities with scales $\gg \lambda_J$ result in implosions/explosions.
- $\blacktriangleright \rightarrow \lambda_{\rm J}$ is estimation for maximal stable mass aggregations.

$$\underbrace{\text{Time}}_{\lambda < \lambda \text{ J}} \underbrace{\text{Explosion}}_{\text{Implosion}}$$

Linear perturbation theory

Alternative interpretation of the Jeans length

Consider cloud with density ρ_0 :

Notice:

 $\lambda_{\rm J} = (\text{Speed of sound}) \cdot (\text{Cloud free fall time})$. (7)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 $\rightarrow~\lambda_J$ is distance a shock wave travels during free fall time of cloud.

► For diameters $D \ll \lambda_{\rm J}$: Shock waves traverse cloud faster than free fall time.

 \rightarrow Rapid compensation of perturbations through gas pressure.

- For $D \gg \lambda_{\rm J}$: Cloud collapses faster than shock waves can cross it.
 - \rightarrow Gas pressure unable to compensate any perturbations.
 - \rightarrow cloud collapses.

Linear perturbation theory

Alternative interpretation of the Jeans length

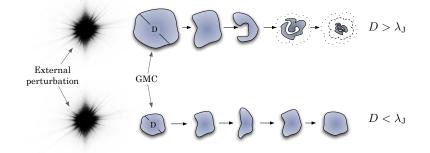


Figure: On the interpretation of the Jeans length, as maximal stable cloud diameter.

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

Linear perturbation theory

Example values

Assumptions

Gas	Ideal, Molecular Hydrogen
Density	$10^{-23} \rho_{\odot} \approx 10^{-20} \text{ Kg} \cdot \text{m}^{-3}$
Temperature	10 K

Yields

Isothermal speed of sound Jeans length
$$\begin{split} & c_s \approx 50 \ \mathrm{m \cdot s}^{-1} \\ & \lambda_J \approx 1 \times 10^{17} \ \mathrm{m} \approx 3 \ \mathrm{pc.} \\ & \rightarrow \text{ approximately size of large molecular clouds.} \end{split}$$

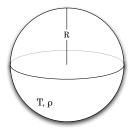
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- The Virial theorem

The Virial theorem for spherical clouds

Model:

- Spherical, static mass aggregation of radius *R*.
- Constant density ρ & temperature T.
- Only force acting on particles: Gravitational.
- Particles have no internal degrees of freedom.



◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The Virial theorem for spherical clouds

Virial Theorem:

Connects average potential & kinetic energy of system:

$$\langle E_{\rm kin} \rangle = -\frac{1}{2} \langle E_{\rm pot} \rangle$$
 . (8)

Average kinetic energy = Thermal energy:

$$\langle E_{\rm kin} \rangle \approx \frac{3}{2} k T \cdot \frac{M}{\mu}$$
 (9)

with system mass M and particle mass μ .

Potential energy = internal gravitational energy:

$$\langle E_{\rm pot} \rangle \approx -\frac{GM^2}{R}$$
 . (10)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The Virial theorem for spherical clouds

Leads to:

• Stability condition: $R \stackrel{!}{\approx} R_{\rm J}$, with stable radius

$$R_{\rm J} := \sqrt{\frac{kT}{\mu G \rho}} \quad . \tag{11}$$

For greater radii, $E_{\rm pot} > E_{\rm kin}$ and gravity outweighs internal pressure. Note:

$$2R_{\rm J} = \frac{2c_{\rm s}}{\sqrt{G\rho}} \approx \lambda_{\rm J} \quad . \tag{12}$$

 \rightarrow Verification of the Jeans length as maximal, stable cloud diameter!

Corresponds to maximum cloud mass

$$M_{\rm J} \approx \sqrt{\frac{k^3 T^3}{\mu^3 G^3
ho}}$$
 (Jeans mass) . (13)

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Stability of Clouds

- Collapse

└─ Isothermal stage of collapse

Collapse of clouds: Isothermal stage of collapse

- Initially: Cloud density low.
 - \rightarrow Radiation escapes easily.
 - \rightarrow Isothermal process.
- As density increases, M_J decreases ~ ρ^{-¹/₂}.
 - \rightarrow Collapse is accelerated even further.
 - \rightarrow Approaches free fall!
- As M_J decreases, subregions become unstable and collapse.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 \rightarrow Fragmentation.

└─ Isothermal stage of collapse

Collapse of clouds: Fragmentation

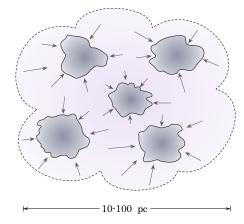


Figure: Fragmentation during the collapse of a GMC.

Stability of Clouds	
- Collapse	
Adiabatic stage of co	2

Collapse of clouds: Adiabatic stage of collapse

lapse

- As density increases \rightarrow Cloud becomes opaque to radiation.
- Process becomes adiabatic \rightarrow Temperature rises: $T \sim \rho^{\frac{2}{3}}$.

うして ふゆう ふほう ふほう うらつ

- ▶ Jeans mass rises: $M_{\rm J} \sim \rho^{\frac{1}{2}} \rightarrow$ Fragmentation halts.
- Collapse slows down \rightarrow Thermal time scale.

Adiabatic stage of collapse

Estimating the final fragment size

During isothermal collapse:

• Energy scale $\sim E_{\text{pot}} \sim GM^2/R$ and time scale $\sim (G\rho)^{-\frac{1}{2}}$ (free fall). \rightarrow estimation for rate of energy release.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

► Radiation rate limited by black body radiation at temperature *T*.

When collapse becomes adiabatic:

- Radiation has reached black body limit.
- Fragments have reach mass limit: $\sim M_J$.

Adiabatic stage of collapse

Estimating the final fragment size

Results:

Estimation for final fragment size:

$$M_{\rm J}^{\rm Final} \approx 0.025 \cdot M_{\odot} \cdot T^{\frac{1}{4}} \, \mathrm{K}^{-1} \tag{14}$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

(for atomic hydrogen).

- Setting $T \approx 10^3$ K, yields $M_{\rm J}^{\rm Final} \approx 0.2~M_{\odot}$.
- Explains mass scales of typical stars!

Adiabatic stage of collapse

Example simulation

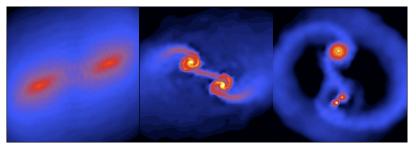


Figure: Example simulation of a collapsing molecular cloud, resulting in the formation of 3 new stars. Initial cloud temperature and span was 10 $\rm K$ and 0.01 $\rm pc$ respectively.[Bate et al]

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

Bibliography

- Stellar Structure and Evolution, R. Kippenhahn, A. Weigert Springer, 1991
- Galaxy Formation, M.S. Longair Springer, 2008
- NASA Spitzer,

http://www.nasa.gov/mission_pages/spitzer/news/spitzer-20090812.html

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Modelling accretion in protobinary systems, M.R. Bate et al Month. Not. Ro. Astr. Soc. Vol. 227 (1995), p. 362-376