Übungen zur Analysis II SS 08 13. Serie

- 1.) Berechnen Sie $\iiint_B (x^2+y^2)\,dx\,dy\,dz$, wobei B durch die Flächen $x^2+y^2=2z$ und z=2 begrenzt wird.
- *2.) [3 P.] Berechnen Sie den Schwerpunkt der homogenen Halbkugel

$$H = \{(x, y, z) : x^2 + y^2 + z^2 \le R^2 \land z \ge 0\} .$$

- *3.) [4 P.] Bestimmen Sie das Volumen des Körpers, den der Zylinder $x^2 + y^2 = Rx$ aus der Kugel $x^2 + y^2 + z^2 = R^2$ herausschneidet.
- 4.) Berechnen Sie die Kraft, mit der ein auf der Oberfläche einer homogenen Kugel liegender Massepunkt infolge Gravitation von dieser angezogen wird.
- 5.) Zu zwei Zahlen 0 < r < R heißt die in Zylinderkoordinaten ϱ, φ, z durch die Gleichung

$$z^2 + (\varrho - R)^2 = r^2$$

beschriebene Fläche Torus.

- (a) Berechnen Sie das Trägheitsmoment des von einem Torus berandeten Körpers bzgl. einer Drehung um die z-Achse.
- (b) Berechnen Sie das Volumen des von einem Torus berandeten Körpers.
- **6.)** Bestätigen Sie die zweite Guldinsche Regel: Das Volumen eines Drehkörpers ist das Produkt des Flächeninhaltes der erzeugenden Fläche mit der Weglänge des Schwerpunktes dieser Fläche bei einer Umdrehung.

Zu den mit * gekennzeichneten Aufgaben sind schriftliche Lösungen anzufertigen und in der Woche vom **07.07.** - **11. 07.** in den Übungen abzugeben.