Klausur zur Analysis II FSU Jena - SS 07

Dozent: Prof. B. Carl

August 07, 2007

01 - Integration

a) (3 Punkte) Berechnen Sie das unbestimmte Integral von

$$f(x) = \frac{1}{x^3 + 3x^2 - 4}$$

02 - Metrische und normierte Räume, Stetigkeit

a) (3 Punkte) Was heisst es, dass eine Funktion $f:D\subset X\to Y$ von einem metrischen Raum (X,d) in einen metrischen Raum (Y,\tilde{d}) in $a\in D$ stetig ist?

b) (3 Punkte) Begründen Sie, dass die Funktion $f: [\mathbb{R}^2, \|\cdot\|_2] \to [\mathbb{R}, |\cdot|]$, definiert durch

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & : (x,y) \neq (0,0) \\ 0 & : (x,y) = (0,0) \end{cases}$$

im ganzen \mathbb{R}^2 stetig ist.

c) (3 Punkte) Untersuchen Sie

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & : (x,y) \neq (0,0) \\ 0 & : (x,y) = (0,0) \end{cases}$$

auf Stetigkeit im Punkt (0,0).

d) (2 Punkte) Wie kann man eine stetige lineare Abbildung zwischen normierten Räumen gleichwertig charakterisieren?

e) (4 Punkte) Es sei $\alpha > \frac{1}{4}$. Zeigen Sie dass $f(x) = \sqrt{x + \alpha}$ eine kontrahierende Selbstabbildung von $[0, 1 + \alpha]$ in sich ist und bestimmen Sie den Fixpunkt.

03 - Differentiation

a) (2 Punkte) Sei $f = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}$: $D \subset \mathbb{R}^n \to \mathbb{R}^m$, wobei D eine offene Menge ist, eine Funktion, die in $a \in D$ differenzierbar ist. Wie kann man die Ableitung der Funktion im Punkt $a \in D$ darstellen?

b) (2 Punkte) Sei $f: \mathbb{R}^2 \to \mathbb{R}^3$ mit

$$f(x,y) = \begin{pmatrix} \cos y \\ \sin x \sin y \\ \sin x \end{pmatrix}$$

Berechnen Sie die Ableitung im Punkt $(x_0, y_0) \in \mathbb{R}^2$.

c) (3 Punkte) Differenzieren Sie

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & : (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

in allen Punkten in denen es möglich ist und geben Sie die Ableitung an.

04 - Taylorscher Satz und lokale Extreme

- a) (3 Punkte) Sei $D \subset \mathbb{R}^n$ offen und $[a, a+h] = \{a+th : 0 \le t \le 1\} \subset D$. Wie lautet für eine Funktion $f \in C^{k+1}(D, \mathbb{R}^m)$ die Taylorformel?
- b) (3 Punkte) Bestimmen Sie das Taylor-Polynom 3. Grades für $f(x,y) = e^x \sin y$ im Punkt (x,y) = (0,0).
- c) (3 Punkte) Geben Sie notwendige Bedingungen und hinreichende Bedingungen dafür an, dass eine Funktion $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ im Punkt $a \in D$ ein lokales Maximum besitzt.
- d) (4 Punkte) Untersuchen Sie die Funktion $f(x, y, z) = x^3 + y^2 + z^2 + 12xy + 2z$ auf lokale Extrema.
- e) (4 Punkte) Entscheiden Sie, ob das System

$$F_1(x, y, u, v) = x + y - u - v = 0$$

$$F_2(x, y, u, v) = xu^2 - yv^2 - 17 = 0$$

durch Funktionen u = u(x, y) und v = v(x, y) in der Umgebung von (x, y, u, v) = (1, 2, 5, -2) auflößbar ist. Geben Sie an dieser Stelle alle partiellen Ableitungen an.

05 - Wegintegrale

- a) (2 Punkte) Was versteht man unter einem rektifizierbaren Weg?
- b) (3 Punkte) Berechnen Sie $\int_{\gamma} f(x) dx$, wenn $f: \mathbb{R}^2 \to \mathbb{R}^2$ die Funktion

$$f(x_1, x_2) = \left(\begin{array}{c} x_2^2 \\ x_1^2 \end{array}\right)$$

ist und γ die obere Hälfte der Ellipse $x_1 = a \cos t, \ x_2 = b \sin t, \ (a, b > 0)$ in Urzeigerrichtung durchläuft.