Übungen zur Differential- und Integralrechnung I (WS 07/08)

3. Serie

1.) Beweisen Sie für reelle Zahlen $a \neq b$ und natürliche Zahl n die Gleichung

$$\frac{a^n - b^n}{a - b} = a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + ab^{n-2} + b^{n-1}$$

2.)* (2 P.) Es sei M eine beschränkte Menge reeller Zahlen. Zeigen Sie, dass dann auch

$$-M = \{-x : x \in M\}$$

beschränkt ist und drücken Sie sup (-M) und $\inf(-M)$ durch sup M und $\inf M$ aus.

3.)* (2 P.) Es seien M und N nach unten beschränkte Mengen reeller Zahlen. Zeigen Sie, dass dann auch

$$M + N = \{x + y : x \in M \text{ und } y \in N\}$$

nach unten beschränkt ist und drücken Sie $\inf (M+N)$ mit $\inf M$ und $\inf N$ aus.

- **4.** Beweisen Sie folgendermaßen die Existenz der Quadratwurzel aus einer positiven Zahl *a*:
 - a) Zeigen Sie, dass die Menge $M=\{b:b^2\leq a\}$ nicht leer und nach oben beschränkt ist. Es sei $s=\sup M.$
 - b) Führen Sie die Annahme $s^2 < a$ zum Widerspruch, indem Sie eine positive Zahl ε mit $(s+\varepsilon)^2 < a$ konstruieren.
 - b) Führen Sie die Annahme $s^2>a$ zum Widerspruch, indem Sie eine positive Zahl ε konstruieren, so dass $s-\varepsilon$ eine obere Schranke von M ist.
 - **5.** Wie müssten Sie Ihre Argumentation in 4.) für einen Beweis der Existenz von $\sqrt[n]{a}$ modifizieren?

Zu den mit * gekennzeichneten Aufgaben sind schriftliche Lösungen anzufertigen und in der Woche vom 12.11. - 16.11. in den Übungen abzugeben.