Übungen zur Vorlesung Analysis 1 WS 06/07

8. Übungsserie

- 1.*) Beweisen Sie: Jedes Polynom ungerader Ordnung mit reellen Koeffizienten hat mindestens eine reelle Nullstelle.
- 2.) Ein Punkt $x_0 \in D$ heißt Fixpunkt einer Funktion f, wenn $f(x_0) = x_0$. Zeigen Sie, dass eine stetige Funktion, die das Intervall [a, b] in sich abbildet, mindestens einen Fixpunkt hat.
- 3.) Eine lineare Funktion y(x) = kx + b heißt Asymptote einer Funktion f(x) für $x \to \infty$ (analog $x \to -\infty$), wenn $\lim_{x \to \infty} [f(x) (kx + b)] = 0$ gilt.
 - a) Stellen Sie Bedingungen auf, unter denen f(x) eine Asymptote besitzt und leiten Sie Formeln zur Berechnung von k und b her!
 - b) Ermitteln Sie die Asymptoten für $x \to \infty$ von

$$f_1(x) = \sqrt{Ax^2 + Bx + C}$$
 $(A > 0)$ und

$$f_2(x) = \frac{Ax^2 + Bx + C}{Dx + E} \qquad (D \neq 0)$$

4.) Untersuchen Sie die angegebenen Funktionen in den jeweiligen Gebieten auf gleichmäßige Stetigkeit ($\epsilon-\delta-$ Technik)

$$a^*$$
) $f(x) = x^2$ in IR

b*)
$$f(x) = \sqrt{x} \text{ in } [0, \infty[$$

c)
$$f(x) = \sin \frac{1}{x}$$
 in $[0, 1]$

5.) Sei f eine stetige Funktion auf einer offenen Menge D und $x_0 \in D$. Zeigen Sie, dass aus $f(x_0) > 0$ die Existenz einer Umgebung $U_{\delta}(x_0)$ folgt mit $f(x) > 0 \quad \forall x \in U_{\delta}(x_0)$.

Es wird empfohlen, alle mit * gekennzeichneten Aufgaben schriftlich zu bearbeiten und in den Übungen in der Woche vom 11.12 bis 15.12.2006 abzugeben.