Klausur Differential- und Integralrechnung 1

(16. Februar 2005, Vorlesung: Prof. Dr. H.-J. Schmeißer)

- Alle angegebenen Lösungswege müssen durchschaubar sein, fehlende Begründungen mindern die Bewertung.
- Es sind keine Hilfsmittel erlaubt.
- Jedes Lösungsblatt ist leserlich (!) mit Namen und Vornamen (bzw. Matrikelnummer) zu versehen.

	Aufgaben	Punkte
1	Für welche reellen Zahlen x und y gilt $ x-y +2 \leq x $? Fertigen Sie ein Skizze der Lösungsmenge an.	4
2	Es sei $n \in \mathbb{N}$ und $0 < x_k < 1$ für $k = 1, \dots, n$. Man zeige:	
	$\prod_{k=1}^{n} (1 - x_k) \ge 1 - \sum_{k=1}^{n} x_k .$	3
3	(a) Berechnen Sie Real- und Imaginärteil der Zahl $z=\left(-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2005}$.	3
	(b) Berechnen Sie alle Lösungen $z\in\mathbb{C}$ der Gleichung $z^4 \ = \ 8(\ i\sqrt{3}-1\) \ .$	3
4	Untersuchen Sie die Zahlenfolgen $\{x_n\}_{n=1}^{\infty}$ auf Konvergenz, und bestimmen Sie gegebenenfalls ihren Grenzwert.	7
	$(a) x_n = \left(1 - \frac{1}{n^2}\right)^n$	(2)
	(b) $x_n = n(1 - \sqrt{1 - 2/n})$	(2)
	(c) $x_1 = 1, x_{n+1} = \sqrt{2x_n}$.	(3)
5	Berechnen Sie die Summe der Reihe $\sum_{k=2}^{\infty} \left[\frac{(-1)^k 2^k}{3^{k-2}} - \frac{3^k}{(k-1)!} \right].$	4
	Ist die Reihe absolut konvergent?	4
6	Untersuchen Sie die folgenden Reihen auf Konvergenz, in (b) auch auf absolute Konvergenz.	5
	(a) $\sum_{k=1}^{\infty} \frac{k-\sqrt{k}}{(k+\sqrt{k})^2}$ (b) $\sum_{k=1}^{\infty} \frac{i^k}{k}$	(2+3)

BITTE WENDEN!

	Aufgaben	Punkte
7	Wann heißt eine Funktion f gleichmäßig stetig auf einer Menge $I\subset D(f)$? Zeigen Sie, dass die Funktion \arctan auf $\mathbb R$ gleichmäßig stetig ist.	4
8	(a) Untersuchen Sie, ob die Funktionen $(n \in \mathbb{N})$ $f_n(x) = \begin{cases} -1 & \text{für } x < -\frac{\pi}{n} \\ \sin\frac{nx}{2} & \text{für } -\frac{\pi}{n} \leq x \leq \frac{\pi}{n} \\ 1 & \text{für } x > \frac{\pi}{n} \end{cases}$ auf \mathbb{R} differenzierbar sind.	3
	(b) Berechnen Sie $\lim_{n\to\infty} f_n(x)$. Ist die Folge $(f_n)_n$ gleichmäßig konvergent auf \mathbb{R} .	2
9	Berechnen Sie jeweils die erste Ableitung $f'(x)$ der folgenden Funktionen	6
	(a) $f(x) = \left(\arctan \sqrt{x^2 + 1}\right)^{-2}$, $D(f) = \mathbb{R}$ (b) $f(x) = x^{x + \ln x}$, $D(f) = (0, \infty)$.	(3)
10	Berechnen Sie die folgenden Grenzwerte:	4
	(a) $\lim_{x\to\infty} x\left[\left(1+\frac{1}{x}\right)^n-1\right]$, $n\in\mathbb{N}$, (b) $\lim_{x\to0} \left[\frac{1}{x}-\frac{1}{e^x-1}\right]$.	(2)
11	Gegeben sei auf $\mathbb R$ die Funktion f durch $f(x) = e^{\frac{2x}{3}}(2+x^2)$.	
	(a) Untersuchen Sie die Funktion auf Monotonie und lokale Extrema.	4
	(b) Wieviele Lösungen $x \in \mathbb{R}$ hat die Gleichung $e^{\frac{2x}{3}}(2+x^2) = 1$? (Begründung)	2
12	Berechnen Sie die Stammfunktionen der Funktion	6
	(a) $f(x) = \frac{1}{1 + \sqrt{x}}$ auf $(0, \infty)$,	(3)
	(b) $f(x) = x \arctan x$ auf \mathbb{R}	(3)
	Für den Übungsschein benötigen Sie mindestens 25 Punkte.	Σ: 60