Übungen zur Algebra II

Ausgabe: 18.06.07

Abgabe: 25.06.07

Blatt 10

Aufgabe 43 (2+2)

Die Gruppe D_8 werde von den Permutationen (1234) und (14)(23) erzeugt, die Gruppe Q_8 von den Matrizen

 $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad , \quad B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \; .$

Berechnen Sie Anzahl und Grade der irreduziblen komplexen Darstellungen von D_8 und Q_8 .

Aufgabe 44 (2+2+2+2)

Seien $n \in \mathbb{N}$, G := Sym(n), F ein Körper und V ein F-Vektorraum mit Basis b_1, \ldots, b_n .

- (i) Zeigen Sie, dass V zu einem FG-Modul mit g $b_i := b_{g(i)}$ für $g \in G$ und $i = 1, \ldots, n$ wird.
- (ii) Zeigen Sie, dass $F(b_1 + \ldots + b_n)$ ein Untermodul von V ist.
- (iii) Beweisen Sie, dass

$$U := \left\{ \sum_{i=1}^{n} \alpha_i \, b_i : \sum_{i=1}^{n} \alpha_i = 0 \right\}$$

ein Untermodul von V der Dimension n-1 ist.

(iv) Zeigen Sie, dass U genau dann ein Komplement in V hat, wenn die Charakteristik von F kein Teiler von n ist.

Aufgabe 45 (2)

Seien K ein Körper, A eine K-Algebra, V, W endlich-dimensionale A-Moduln und U ein Untermodul von V. Zeigen Sie:

 $\dim_K \operatorname{Hom}_A(V, W) \le \dim_K \operatorname{Hom}_A(U, W) + \dim_K \operatorname{Hom}_A(V/U, W).$

$\underline{\textbf{Aufgabe 46}} \ (2+2+2+2+2)$

Seien F ein Körper, G eine endliche Gruppe und N ein Normalteiler von G.

(i) Zeigen Sie, dass

$$I(FG) := \left\{ \sum_{g \in G} \alpha_g g : \sum_{g \in G} \alpha_g = 0 \right\}$$

ein Ideal in FG ist.

- (ii) Bestimmen Sie eine Basis von I(FG).
- (iii) Beweisen Sie, dass die Abbildung

$$\nu_N: FG \longrightarrow F[G/N], \ \sum_{g \in G} \alpha_g g \longmapsto \sum_{g \in G} \alpha_g(gN),$$

ein Homomorphismus von Algebren ist.

- (iv) Zeigen Sie: $Ker(\nu_N) = (FG) \cdot I(FN) = I(FN) \cdot FG$.
- (v) Geben Sie eine Basis von $Ker(\nu_N)$ an.